第一篇:x射线衍射的原理及可以解决的问题
x射线衍射的原理及可以解决的问题
浏览次数:1730次悬赏分:10 | 解决时间:2022-10-26 12:23 | 提问者:明天过后202211
要写读书报告,想知道X射线衍射的原理以及可以解决的问题。要详细点的,别太笼统。谢谢!
X射线衍射原理及应用介绍
特征X射线及其衍射 X射线是一种波长很短(约为20~0.06 nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10^(-8)cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将会发生衍射;衍射波叠加的结果使射线的强度在某些方向上增强、而在其它方向上减弱;分析在照相底片上获得的衍射花样,便可确定晶体结构。这一预见随后为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布拉格定律:
2d sinθ=nλ,式中,λ为X射线的波长,衍射的级数n为任何正整数。
当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一具有d点阵平面间距的原子面上时,在满足布拉格方程时,会在反射方向上获得一组因叠加而加强的衍射线。
应用:
1、当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格条件的反射面得到反射。测出θ后,利用布拉格公式即可确定点阵平面间距d、晶胞大小和晶胞类型;
2、利用X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础,测定衍射线的强度,就可进一步确定晶胞内原子的排布。
3、而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射线束的波长λ作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。再把结构已知晶体(称为分析晶体)用来作测定,则在获得其衍射线方向θ后,便可计算X射线的波长λ,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
4、X射线衍射在金属学中的应用
X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相;而铁中的α—→γ相转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究;对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括X射线散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。
在金属中的主要应用有以下方面:
(1)物相分析 是X射线衍射在金属中用得最多的方面,又分为定性分析和定量分析。定性分析是把对待测材料测得的点阵平面间距及衍射强度与标准物相的衍射数据进行比较,以确定材料中存在的物相;定量分析则根据衍射花样的强度,确定待测材料中各相的比例含量。
(2)精密测定点阵参数 常用于相图的固态溶解度曲线的绘制。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可获得单位晶胞原子数,从而可确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。
(3)取向分析 包括测定单晶取向和多晶的结构(如择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
(4)晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
(5)宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测定点阵平面在不同方向上的间距的改变,可计算出残留应力的大小和方向。
(6)对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
(7)合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
(8)结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
(9)液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
(10)特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
X射线分析的新发展
金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
5、X射线物相分析
X射线照射晶体物相产生一套特定的粉未衍射图谱或数据D-I值。其中D-I与晶胞形状和大小有关,相对强度I/I0,与质点的种类和位置有关。
与人的手指纹相似,每种晶体物相都有自己独特的XPD谱。不同物相物质即使混在一起,它们各自的特征衍射信息也会独立出现,互不干扰。据此可以把任意纯净的或混合的晶体样品进行定性或定量分析。
(1)
X射线物相定性分析
粉未X射线物相定性分析无须知晓物质晶格常数和晶体结构,只须把实测数据与(粉未衍射标准联合会)发行的PDF卡片上的标准值核对,就可进行鉴定。
当然这是对那些被测试研究收集到卡片集中的晶相物质而言的,卡片记载的解析结果都可引用。
《粉末衍射卡片集》是目前收集最丰富的多晶体衍射数据集,包括无机化合物,有机化合物,矿物质,金属和合金等。1969年美国材料测试协会与英、法、加等多国相关协会联合组成粉末衍射标准联合会,收集整理、编辑出版PDF卡片,每年达到无机相各一组,每组1500-2000张不等.1967年前后,多晶粉未衍射谱的电子计示示机检索程序和数据库相继推出.日本理学公司衍射射仪即安装6个检索程序(1)含947个相的程序;(2)含2716个相的常用相程序;(3)含3549个相的矿物程序;(4)含6000个相的金属和合金程序;(5)含31799个相的无机相程序(6)含11378个相的有机相程序.每张片尾记录一个物相。
(2)多相物质定性分析
测XRD谱,得d值及相对强度后查索引,得卡片号码后查到卡片,在±1%误差范围内若解全部数据符合,则可判断该物质就是卡片所载物相,其晶体结构及有关性能也由卡片而知。这是单一物相定性分析。
多相混合物质的XRD谱是各物相XRD谱的迭加,某一相的谱线位置和强度不因其它物相的存在而改变,除非两相间物质吸收系数差异较大会互相影响到衍射强度。固熔体的XRD谱则以主晶相的XRD为主。
已知物相组分的多相混合物,或者先尝试假设各物相组分,它们的XRD谱解析相对要容易得多。分别查出这些单一物相的已知标准衍射数据,d值和强度,将它们综合到一起,就可以得到核实其有无。如钢铁中的δ相(马氏体或铁素体)γ相(奥氏体)和碳化物多相。
完全未知的多相混合物,应设法从复相数据中先查核确定一相,再对余下的数据进行查对。每查出一相就减少一定难度,直至全部解决。当然对于完全未知多相样品可以了解其来源、用途、物性等推测其组分;通过测试其原子吸收光谱、原子发射光谱,IR、化学分析、X射线荧光分析等测定其物相的化学成分,推测可能存在的物相。查索到时,知道组分名称的用字顺索引查,使用d值索引前,要先将全部衍射强度归一化,然后分别用一强线、二强线各种组合、三强线各种组合…联合查找直至查出第一主相。标记其d值,I/I1值。把多余的d值,I/I1值再重新归一化,包括与第一主相d值相同的多余强度值。继续查找确定第二主相,直至全部物相逐一被查找出来并核对正确无误。遇到没被PDF卡收录的物相时,需按未知物相程序解析指认。
物相定性分析中追求数据吻合程度时,(1)d值比I/I1值更重要,更优先。因为d测试精度高,重现性好;而强度受纯度(影响分辨率)、结晶度(影响峰形)样品细微度(同Q值时吸收不同),辐射源波长(同d值,角因子不同)、样品制备方法(有无择优取向等)、测试方法(照相法或衍射仪法)等因素影响,不易固定。(2)低角度衍射线比高角度线重要。对不同晶体而言低角度线不易重迭,而高角度线易重迭或被干扰。(3)强线比弱线重要。尤其要重视强度较大的大d值线。
(3)X射线物相定量分析
基本原理和分析
在X射线物相定性分析基础上的定量分析是根据样品中某一物相的衍射线积分强度正变化于其含量。不能严格正比例的原因是样品也产生吸收。对经过吸收校正后的的衍射线强度进行计算可确定物相的含量。这种物相定量分析是其它方法,如元素分析、成分组分分析等所不能替代的。
6、结晶度的XRD测定
7、高分子结晶体的X射线衍射研究
第二篇:x射线衍射仪原理
x射线衍射仪原理及应用
课程名称
材料分析测试技术 系 别
金属材料工程系
专 业
金属材料工程
班 级
材料**** 姓 名 ______ * *_ 学 号
********
化学工程与现代材料学院 制
x射线衍射仪原理及应用
基本原理:
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子,在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。
基本特征:
X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰
基本构成:
1,高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
X射线管利用高速电 子撞击金属靶面产生 X射线的真空电子器件,又称X光管。分为充气管和真空管两类。1895 年 W.K.伦琴在进行克鲁克斯管实验时发现了 X射线。克鲁克斯管就是最早的充气X射线管,其功率小、寿命短、控制困难,现已很少应用。1913年 W.D.库利吉发明了真空X射线管。管内真空度不低于10-4帕。阴极为直热式螺旋钨丝,阳极为铜块端面镶嵌的金属靶。阴极发射出的电子经数万至数十万伏高压加速后撞击靶面产生X射线。以后经过许多改进,至今仍在应用。现代出现一种在阳极靶面与阴极之间装有控制栅极的 X射线管,在控制栅上施加脉冲调制,以控制X射线的输出和调整定时重复曝光。X射线管用于医学诊断、治疗、零件的无损检测,物质结构分析、光谱分析、科学研究等方面。X射线对人体有害,使用时须采取防护措施。简单的说,它包括四个部分:
(1).产生电子的阴极,一般是螺旋形状的钨丝,加热后可以发射电子。
(2).阳极靶,它用来吸收阴极电子,通过这些高速电子的撞击,产生X射线(X射线的产生原理~你应该知道吧?赘述),撞击会产生大量热(主要的能量消耗形式),故靶需要水冷。
(3).阴极周围的聚焦罩,就是对电子起一个聚焦的作用,使靶上面产生聚焦斑,X射线从聚焦斑射出。
(4).X射线管体,它是真空的,一般由玻璃或金属制成。窗口由钹密封。2,样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。
金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10x10mm,如果面积太小可以用几块粘贴一起。对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。因此要求测试时合理选择响应的方向平面。对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。粉末样品要求磨成320目的粒度,约40微米。粒度粗大衍射强度底,峰形不好,分辨率低。要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。粉末样品要求在3克左右,如果太少也需5毫克。样品可以是金属、非金属、有机、无机材料粉末。对于研究课题使用的、购买的各种原料一定要进行鉴定,如材料分子式,晶型,结晶度,粒度等。以免用错原料。对于不同基体的薄膜样品,要了解检验确定基片的取向,X射线测量的膜厚度约20个纳米。对于纤维样品的测试应该提出测试纤维的照射方向,是平行照射还是垂直照射,因为取向不同衍射强度也不相同。对于焊接材料,如断口、焊缝表面的衍射分析,要求断口相对平整,提供断口所含元素。如果一个断口照射面积小则可用两个或三个断口拼起来。X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。非金属材料的X射线衍射技术可以分析材料合成结构、氧化物固相相转变、电化学材料结构变化、纳米材料掺杂、催化剂材料掺杂、晶体材料结构、金属非金属氧化膜、高分子材料结晶度、各种沉积物、挥发物、化学产物、氧化膜相分析、化学镀电镀层相分析等。
3,射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
4,衍射图的处理分析系统 现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
扫描方式及其用法:
多晶体X射线衍射方法一般都是θ-2θ扫描。即样品转过θ角时,测角仪同
时转过2θ角。这个转动的过程称为扫描。例如,我们要对样品进行物相鉴定时,需要测量2θ=5°-80°范围内的衍射谱,这个测量过程就称为“扫描”。扫描的方式一般分为两种:连续扫描和步进扫描。
连续扫描:是指测角仪的连续转动方式,测角仪从起始的2θ到终止的2θ进行匀速扫描。其参数主要有两个,一个是数据点间隔,另一个是扫描速度。扫描速度是指单位时间内测角仪转过的角度,通常取2°/min,4°/min或8°/min或16°/min等。数据点间隔是指每隔多少度取一个数据点。一般来说,两个参数需要组合。若数据点间隔取0.02°,则步长可取4-8°/min。不当的组合会引起衍射峰强度的降低、衍射峰型不对称、或峰位向扫描方向一侧移动。连续扫描一
般用于做较大2θ范围内的全谱的扫描,适合于定性分析。例如:用连续扫描方式,从20°扫描到80°,数据点间隔为0.02°,扫描速度为4°/min。所需要的时间为:(80-20)/4=15min。从这个计算过程来看,实验时间与数据点间隔无关,连续扫描一般用时较少。一般来说,如果X光管的功率较低或实际使用功率较低或光管使用时间较长,为了获得更加清晰的图谱和较高的强度,需要使用较慢的扫描速度,如2°/min。反之,使用高功率的光管,如18KW的转靶光管,当使用功率达到10KW时,扫描速度可以使用8°/min。有人做过实验,发现18KW的转靶衍射仪上,用扫描速度4,8和16°/min 来扫描同一个样品,图谱基本没有变化。对于硅酸盐之类的无机物、金属材料中的微量相或结晶状态不好的化合物相分析,建议使用较慢的扫描速度来获得较高的强度和清晰的图谱。扫描速度极慢时可以使用数据点间隔0.01°,但当扫描速度为4°/min或以上的速度时,建议使用0.02°或0.03°。否则,图谱的噪声很大,图谱上下波动很大,把一些可能的弱峰掩盖。描速度,如2°/min。反之,使用高功率的光管,如18KW的转靶光管,当使用功率达到10KW时,扫描速度可以使用8°/min。有人做过实验,发现18KW的转靶衍射仪上,用扫描速度4,8和16°/min 来扫描同一个样品,图谱基本没有变化。对于硅酸盐之类的无机物、金属材料中的微量相或结晶状态不好的化合物相分析,建议使用较慢的扫描速度来获得较高的强度和清晰的图谱。扫描速度极慢时可以使用数据点间隔0.01°,但当扫描速度为4°/min或以上的速度时,建议使用0.02°或0.03°。否则,图谱的噪声很大,图谱上下波动很大,把一些可能的弱峰掩盖。
步进扫描:步进扫描方式是将扫描范围按一定的步进宽度(0.01°或0.02°)分成若干步,在每一步停留若干秒(步进时间),并且将这若干秒内记录到的总光强度作为该数据点处的强度。例如,从20°扫描到80°,步进宽度为0.02°,步进时间为1sec。那么,扫描完成所需的时间为:{[(80-20)/0.02]*1}/60=50min。从结果来看,实验所需时间与两个参数都有关。不合适的参数组合,会让一个实验做上一天。由于步进扫描可以增加每个数据点的强度(不是某一时间的真实强度而是一段时间内的累积强度),因而可以降低记数时的统计误差,提高信噪比。步进扫描一般用于较窄2θ范围内的精细扫描,可用于定量分析、线形分析以及精确测定点阵常数、Retiveld全谱拟合等。
研究晶体材料,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。
研究晶体材料,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。
单晶衍射法:
单晶X射线衍射分析的基本方法为劳埃法与周转晶体法。
劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。
周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)结构,但应较少。
多晶衍射法:
多晶X射线衍射方法包括照相法与衍射仪法。
照相法以光源发出的特征X射线照射多晶样品,并用底片记录衍射花样。根据样品与底片的相对位置,照相法可以分为德拜法、聚焦法和针孔法,其中德拜法应用最为普遍。
德拜法以一束准直的特征X射线照射到小块粉末样品上,用卷成圆柱状并与样品同轴安装的窄条底片记录衍射信息,获得的衍射花样是一些衍射弧。此方法的优点为:⑴ 所用试样量少(0.1毫克即可);⑵ 包含了试样产生的全部反射线;⑶ 装置和技术比较简单。
聚焦法的底片与样品处于同一圆周上,以具有较大发散度的单色X射线照射样品上较大区域。由于同一圆周上的同弧圆周角相等,使得多晶样品中的等同晶面的衍射线在底片上聚焦成一点或一条线。聚焦法曝光时间短,分辨率是德拜法的两倍,但在小θ 范围衍射线条较少且宽,不适于分析未知样品。
针孔法用三个针孔准直的单色X射线为光源,照射到平板样品上。根据底片不同的位置针孔法又分为穿透针孔法和背射针孔法。针孔法得到的衍射花样是衍射线的整个圆环,适于研究晶粒大小、晶体完整性、宏观残余应力及多晶试样中的择优取向等。但这种方法只能记录很少的几个衍射环,不适于其它应用。衍射仪法:
X射线衍射仪以布拉格实验装置为原型,融合了机械与电子技术等多方面的成果。衍射仪由X射线发生器、X射线测角仪、辐射探测器和辐射探测电路4个基本部分组成,是以特征X射线照射多晶体样品,并以辐射探测器记录衍射信息的衍射实验装置。现代X射线衍射仪还配有控制操作和运行软件的计算机系统。X射线衍射仪的成像原理与聚集法相同,但记录方式及相应获得的衍射花样不同。衍射仪采用具有一定发散度的入射线,也用“同一圆周上的同弧圆周角相等”的原理聚焦,不同的是其聚焦圆半径随 2θ的变化而变化。衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。双晶衍射法:
双晶衍射仪用一束X射线(通常用Ka1作为射线源)照射一个参考晶体的表面,使符合布拉格条件的某一波长的X射线在很小角度范围内被反射,这样便得到接
近单色并受到偏振化的窄反射线,再用适当的光阑作为限制,就得到近乎准值的X射线束。把此X射线作为第二晶体的入射线,第二晶体和计数管在衍射位置附近分别以Δθ 及Δ(2θ)角度摆动,就形成通常的双晶衍射仪。
在近完整晶体中,缺陷、畸变等体现在X射线谱中只有几十弧秒,而半导体材料进行外延生长要求晶格失配要达到10-4或更小。这样精细的要求使双晶X射线衍射技术成为近代光电子材料及器件研制的必备测量仪器,以双晶衍射技术为基础而发展起来的四晶及五晶衍射技术(亦称为双晶衍射),已成为近代X射线衍射技术取得突出成就的标志。但双晶衍射仪的第二晶体最好与第一晶体是同种晶体,否则会发生色散。所以在测量时,双晶衍射仪的参考晶体要与被测晶体相同,这个要求使双晶衍射仪的使用受到限制。
第三篇:X射线衍射分析原理及其应用
X射线衍射分析
摘要:
X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。
前言:
1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现 0 了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。
关键词:方法,衍射,原理,应用
X射线衍射仪的原理
1.X射线衍射原理
当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。
由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。
在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。
晶体结构=点阵 结构基元,点阵又包括直线点阵,平面点阵和空间点阵。在x射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。光栅衍射
当光程差(BD BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为:
2dsinθ=nλ
一、X射线衍射法
1.多晶粉末法
a.物相分析
X射线物相分析是以晶体结构为基础,通过比较晶体衍射花样来进行分析的。
对于晶体物质中来说,各种物质都有自己特定的结构参数(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X射线衍射花样也就各不相同,所以通过比较X射线衍射花样可区分出不同的物质。
2单晶衍射法
若将一束单色X射线射到一粒静止的单晶体上,入射线与晶粒内的各晶面族都有一定的交角,只有很少数的晶面能符合布拉格公式而发生衍射。目前常用的收集单晶体衍射数据的方法,一为回摆法,二为四圆衍射仪法。
X射线衍射法的应用
由于,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点,所以X射线衍射技术在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域被广泛应用。本文主要介绍其在药物鉴定和岩石矿物学中的重要作用。
1.X射线衍射分析方法在中药鉴定中的应用
X射线衍射分析方法具有简便易行、直观、图谱信息量大、指纹性强、稳定可靠、所需样品量少、结果可靠的特点,用于中药鉴定是一种比较理想而有效的方法,它不仅可用于植物类、动物类、矿物类中药的鉴定,还可用于菌类中药和中药复方的鉴定,为中药的鉴定提供了准确、简便、可靠的鉴定方法,并为临床安全用药提供了保证[23]。
[24] 吕扬,郑启泰,吴楠等探究了x射线衍射Fourier图谱分析方法在茜草类、贝母类、山药类植物类中药中的应用,揭示了中药材道地性的客观规律,并建立了相应评价指标系统。
张丽等将马鹿茸的对照X射线衍射图谱与花鹿茸对照X射线衍射图谱进行拓扑分析比较,得出两种来源的鹿茸具有共同的组分性质,二者可作为同一种中药材[26]使用的结论。王媚等对磁石XRD的图谱特征峰数据进行分析,发现不同产地不同批次的磁石矿物组成及其含量有一定的差异,同时得出磁石药材中主要物相为Fe2O3,SiO2。翁立明[27]等通过对全国10个不同省份的全蝎样品进行分析研究,获取相应的X射线衍射图谱,得出X射线衍射指纹图谱可以用于动物中药材全蝎样品的分析鉴定和质量控制。
总之,,应用X射线衍射Fourier指纹图谱可以实现某些植物或动物中药材的鉴[25] 2 定,而且在分析鉴别同种中药材的不同来源方面有着广阔的发展前景。综上所述,X射线衍射分析技术已广泛应用于我国药学研究的各个领域,并发挥着不可替代的作用.相信通过药学与晶体学科研究人员的共同努力,利用X射线衍射技术,不断建立新的分析方法,并扩展其应用范围,将使X射线衍射技术在我国和世界的不同交义学科领域中发挥更为重要的作用,为我国的创新中、西药学的研究与开发提供有效的质量控制方法。
2.X射线衍射分析法在岩石矿物学中的应用
地壳由矿物、岩石组成,对其成分、结构和性质等的分析是矿物学、岩石学的重要研究内容。X射线衍射技术特别是粉晶X射线衍射技术自发明以来就被应用于矿物、岩石研究,广泛应用于矿物的定性、定量分析。在石油地质和钻采工程等领域,对粘土矿物的研究成果应用较广。尽管方法还存在不足,但基本能满足目前的地质应用要求。因为在地质研究中主要关心粘土矿物的种类和相对含量的高低,对粘土矿物的准确含量并不特别要求。
总之,X射线衍射方法进行物相定量分析方法很多,但是有些方法需要有纯的物质作为标样,而有时候纯的物质难以得到,从而使得定量分析难以进行,从这个
[29]意义上说,无标样定量相分析法具有较大的使用价值和推广价值。
X射线是研究粘土矿物尤其是研究泥岩和碳酸岩盐中粘土矿物的重要手段。冯泽[30]
31[28]则列举了实例,说明了X衍射技术在石油勘探开发中的重要应用。范光、葛祥坤[],利用微区X射线仪对新疆某地区铍矿床的矿石进行铍选矿试验,探究了铍的存在形式,确定该区域的主要矿物为羟硅铍石。
廖立兵等,介绍了粉晶X射线衍射在岩石矿物学研究中的应用。庞小丽等综述了粉晶X射线衍射法在造岩矿物、拈土矿物、岩组学、类质同象和结晶度的测定等领域发挥的重要作用。综述他们的观点,粉晶X射线衍射不仅在矿物的定性/定量分析、晶胞参数测定、类质同像研究、多型研究、有序/无序结构研究、岩组学研究等传统领域继续发挥着重要作用,在矿物结晶过程和相转变研究、矿物表面物相研究、矿物缺陷研究和矿物晶体结构测定等新领域也展现出广阔的应用前景。
-6由于原子吸收系统分析特点是灵敏度高(10级)、准确度和精确度高、分析速度块、分析范围广,可测定70多种元素,该方法在地球化学找矿分析中常用在Cu,[34]Pb,Zn,Ni,等元素的测定。
李国武[35][32]
[33]等通过实验探究西藏罗布莎铬铁矿中硅铁合金矿物发现样品的x射线衍射中以FeSi为主的单颗粒中含有FeSi2的衍射峰,而在另一些FeSi2单颗粒样品中含有自然硅的衍射峰。说明可能存在FeSi-FeSi2-Si的晶出顺序推测其环境中的还原程度依次增高。因此认为罗布莎铬铁矿重砂中的硅铁合金矿物可能是地球旱期演化分异作用的结果。
此外,X射线衍射分析粘土矿物在油气田开发中的应用
[36]
也十分广泛。许多油 3 气田存在于沉积岩中,沉积岩中的粘土矿物与非粘土矿物的种类、性质与油气田的勘探、开采有大的关系。X射线衍射仪主要用来分析这些矿物,总结出矿物的种类和性质,为勘探和开发提供依据。
六、总结
我认为X射线衍射分析方法是一种有用的工具,在许多科研项目中有重要且有效的作用。它具有许多优点,比如不损伤样品、快捷、能得到有关晶体完整性的大量信息等,该方法虽然不是在任何领域都比别的分析方法优,但在鉴定物质及测定物质结中应用十分广泛。作为物质结构分析不可替代的分析手段,X射线衍射仪在航空、钢铁、化工、建材、石油、煤炭、地矿几乎所有产业以及超导、生命科学等新兴研究领域均有着广泛的应用,常被称作分析仪器中的多面手。
参考文献
[1]武汉大学.《分析化学.下册(第五版)》
[2]程国昌.黄宗卿.现场X射线衍射电化学研究的新进展.重庆大学报。1992,15(1):5-7 [3]郭常霖.精确测定低对称晶系多晶材料点阵常数的射线衍射方法.无机材料学报.[4]林西生.应凤祥.郑乃萱.《X射线衍射分析技术及其地质应用》.石油工业出版社.[5]周健,王河锦.X射线衍射峰五基本要素的物理学意义与应用.矿物学报.第22卷第二期。2022年6月。
[6]常颖.郑启泰.吕扬.粉末X射线衍射技术在药物研究中的应用.X射线衍射应用专题.36卷(2022年)6期
[7]汪永斌.朱国才等.生物质还原磁化褐铁矿的实验研究.过程工程学报2022.6 [8]沈春玉等.X射线衍射法测定分子筛晶胞参数与结晶度.理化检验.物化分册.第38卷第7期
[9].陶琨.X射线衍射仪及其应用介绍.[10]南京大学地质学系矿物岩石教研室.粉晶射线物相分析.北京:地质出版社.[11]Chung F H Quantitative interpretation of X-ray diffraction patterns 1975(1)[12]Popovices Grzeta-Plenkovicb The doping method in quantitative X-ray 4 diffraction phase analysis addendum 1983(5)[13]储刚.含非晶样品的射线衍射增量定量相分析方法.物理学报1998,47(7):1143~1145 [14]Chu G.Sui Q External standard method of quantitative X-ray diffraction phase analysis ofsamples containing a morphous material 1994(3)[15]吴万国,阮玉忠射线衍射无标定量分析法的研讨.福州大学学报,1997,25(3):37~40 [16]沈春玉,储刚.X射线衍射定量相分析新方法.分析测试学报,2022 [17]洪汉烈,陈建军,杨淑珍.水泥熟料定量分析的全谱拟合法.分析测试学报,2022 [18]卢冬梅,万乾丙,晋勇.粉末X射线衍射仪器的应用。四川大学学报(自然科学版),2022,40(6:)1114 [19]朱俊武,王信等。无机化学学报,2022,20(7):863 [20]田志宏,张秀华,田志广.X射线衍射技术在材料分析中的应用.工程与试验.Vol.49 No·3 [21]卢光莹,华子千.《生物大分子晶体学基础》.北京:北京大学出版社,1995 [22]刘粤惠,刘平安.X射线衍射分析原理与应用[M ].北京:化学工业出版社,2022.[23].黄燕,委国等.X射线衍射法在中药鉴定中的应用.山东中医杂志2022年4月第23卷第4期
[24]吕扬,郑启泰,吴楠,等.中药材x射线衍射图谱研究(17.药学学报,1997.0);193.[25]张丽,王树春,吴云山,吕扬,朱志峰.X射线衍射Fourier指纹图谱.[26]王媚,刘训红等.磁石的X射线Fourier指纹图谱.[27]翁立明,吴云山,吕扬等。动物中药材全蝎的粉末X射线衍射Fourier指纹图谱鉴定.中国医学科学院报.[28]张荣科、范 光.粘土矿物X射线衍射相定量分析方法与实验.铀矿地质.第 19卷第 3期2022年5月
[29]杨新萍.X射线衍射技术的发展和应用.山西师范大学学报(自然科学版)第21卷第1期.2022年3月
[30]冯泽.X射线衍射物相分析在石油勘探开发中的应用.小型油气藏.第9卷第3期.2022年9月
[31]范光、葛祥坤.微区X射线衍射在矿物鉴定中的应用实例.帕纳科.第十一届用户X射线分析仪器技术交流会论文集.[32]廖立兵,李国武等.粉晶X射线衍射在矿物岩石学研究中的应用.[33]庞小丽,刘晓晨等.粉晶X射线衍射法在岩石学和矿物学研究中的应用.岩矿测试.Vol.28,No.52022年10月.[34]杨小峰等.《地球化学找矿方法》.北京:地质出版社。
[35]李国武,施倪承.西藏罗布莎铬铁矿中硅铁合金矿物的X射线衍射研究.岩石矿物学杂志.第24卷第5期.[36]马礼敦.《近代X射线多晶衍射分析--实验技术与数据分析》.化学工业出版社.
第四篇:X射线衍射(范文)
X射线衍射
(大庆师范学院 物理与电气信息工程系 10级物理学一班 周瑞勇 202201071465)
摘 要:X射线受到原子核外电子的散射而发生的衍射现象。由于晶体中规则的原子排列就会产生规则的衍射图像,可据此计算分子中各种原子间的距离和空间排列,是分析大分子空间结构有用的方法。
关键词:核外电子 散射 衍射 空间排列
一
前言
1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。
X射线及其衍射X射线是一种波长很短(约为20~0.06埃)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如通常使用的靶材对应的X射线的波长大约
为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。
二 发展
X射线是19世纪末20世纪初物理学的三大发现(X射线1895年、放射线1896年、电子1897年)之一,这一发现标志着现代物理学的产生。
自伦琴发现X射线后,许多物理学家都在积极地研究和探索,1905年和1909年,巴克拉曾先后发现X射线的偏振现象,但对X射线究竟是一种电磁波还是微粒辐射,仍不清楚。1912年德国物理学家劳厄发现了X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结构的周期性,发表了《X射线的干涉现象》一文。
劳厄的文章发表不久,就引起英国布拉格父子的关注,当时老布拉格(WH.Bragg)已是利兹大学的物理学教授,而小布拉格(WL.Bragg)则刚从剑桥大学毕业,在卡文迪许实验室。由于都是X射线微粒论者,两人都试图用X射线的微粒理论来解释劳厄的照片,但他们的尝试未能取得成功。年轻的小布拉格经过反复研究,成功地解释了劳厄的实验事实。他以更简洁的方式,清楚地解释了X射线晶体衍射的形成,并提出了著名的布拉格公式:nX=Zdsino这一结果不仅证明了小布拉格的解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构的信息。
1912年11月,年仅22岁的小布位格以《晶体对短波长电磁波衍射》为题向剑桥哲学学会报告了上述研究结果。老布拉格则于1913年元月设计出第一台X射线分光计,并利用这台仪器,发现了特征X射线。小布拉格在用特征X射线分析了一些碱金属卤化物的晶体结构之后,与其父亲合作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证。金刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键按正四面体形状排列的结论。这对尚处于新生阶段的X射线晶体学来说是一个非常重要的事件,它充分显示了X射线衍射用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接受。
三 原理与应用
1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程:
2d sinθ=nλ
式中λ为X射线的波长,n为任何正整数。
当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型;根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相;而铁中的α─→γ
转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面。
四 物相分析与取向分析
物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。
取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。
对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
五 最新进展
X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
参考文献:
[1] 梁栋材,X射线晶体学基础,科学出版社,2022年,北京
[2] 于全芝,宋连科等.多晶材料X射线衍射定量分析的多项式拟合法.光谱学与光谱分析,2022.2.[3] 姬洪,左长明等.SrTiO3薄膜材料的高分辨率X射线衍射分析研究.功能材料,2022.z1.[4] 张俊,王苏程等.X射线衍射法测定加载条件下镍基单晶高温合金的表层应力状态.金属学报,2022.11.
第五篇:第三章 X射线衍射的几何原理
第三章 X射线衍射的几何原理
如图,一束波λ照射空间任意两阵点A、B,则产生散射,在空间某方向总有干涉加强的波程差:δ=nλ(n=0,1,2,……)相差: φ=n2π 波阵面: 若δ=AM-BM=nλ 或 φ=
干涉加强
若δ=(2n 1)λ 或 φ=(2n 1)π 削弱为0, 干涉加强——即衍射.第一节 布拉格方程
在推导布拉格方程之前,把晶体看作由许多平行的原子面堆积而成,衍射线看作是原子面对入射线的反射,即X-ray照射到的原子面中所有原子的散射波在原子面反射方向上的相位是相同的,是干涉加强的方向。假定在参与散射的晶体中: ①晶面完整、平直
②入射线平行,且为单色X-ray(波长一定)
1.1 布拉格定律的推证
如前所述,当X射线照射到晶体上时,各原子周围的电子将产生相干散射和非相干散射,相干散射线会产生干涉,在相邻散射波波程差为波长整数倍的方向上,将出现X-ray衍射线。
图2-1 布拉格反射
1.1.1 一层原子面上散射X-ray的干涉
如图2-1,X-ray以θ角入射到原子面A并以β角散射时,相距为a的任意两原子P、K的散射X射线的光程差为: δ=QK-PR=a(cosθ-cosβ)(1)当δ=nλ时,在β方向干涉加强
假定原子面上所有原子的散射线同位相,即δ=0,则a(cosθ-cosβ)=0,θ=β 即当入射线与散射角相等时,一层原子面上所有散射波干涉加强。与可见光的反向定律相类似,X-ray从一层原子面呈镜面反射的方向,就是散射线干涉加强的方向:即一层原子面对X-ray的衍射在形式上可看成原子面对入射线的反射。
1.1.2 相邻原子面的散射波的干涉
因X-ray具有强的穿透力,晶体的散射线来自若干层原子面,除同一层原子面的散射线互相
干涉外,各原子面的散射线之间还要互相干涉。
如图示-1,一束波长λ的X-ray,射到面间距为d的A,B晶面上,当满足2dsinθ=nλ时,产生衍射。1-1`和2-2`的波程差:δ=ML LN=2dsinθ
若 δ=nλ 则相邻原子面散射波干涉加强——产生衍射 即 2dsinθ=nλ(n=0,1,2,3, …)此即布拉格方程
方程中:d ——晶面间距; θ ——掠射角或布拉格角(半衍射角)λ——入射线波长 2θ——衍射角; n ——为整数,称反射级数
1.2 布拉格方程的讨论
1.2.1 选择反射
X-ray在晶体中的衍射,实质上是晶体中各原子相干散射波之间互相干涉的结果。一束可见光以任意角度投射到镜面上时都可以产生反射,不受条件限制。X-ray从原子面的反射是有选择地,其选择条件为布拉格方程
1.2.2 产生衍射的限制条件
由2dsinθ=nλ
考虑n=1(即1级反射)的情况,有
——即能产生衍射的限制条件,因sinθ≤1
它说明:波长λ的 X-ray 照射晶体时,只有面间距 的晶面才能产生衍射。
1.2.3 干涉面和干涉指数
在上述布拉格方程中,对一定的d、λ,当n不同时,θ不同,所以不能求出d 由此引入实用布拉格方程。2dhklsinθ=nλ 得 2dHKLsinθ=λ
令,H=nh, K=nk, L=nl 这样,由(hkl)晶面的n级反射,可以看成由面间距为的(HKL)晶面的1级反射,且(hkl)∥(HKL)
面间距为dHKL的晶面不一定是晶体中的原子面,而是为了简化布拉格公式而引入的反射面——称为干涉面。
(HKL)——称干涉指数。可能有公约数n的晶面指数——广义晶面指数。有 2dsinθ=λ ——实用布拉格方程 即:H=nh K=nk L=nl
1.2.4 衍射线方向与晶体结构的关系
由2dsinθ=λ 有波长λ一定时,则θ是d的函数
将上述立方、斜方晶系的面间距公式代入布拉格公式,平方,得:
第二节 衍射矢量方程
图2-2 衍射矢量平行于反射晶面法线
设入射角θ,满足布拉格方程,P为原子面(HKL),N为法线,入射线方向用单位矢量S0表示,衍射线方向用单位矢量S表示,则S-S0称衍射矢量 ︱S0︱=︱S︱=1 ——即S0、S为单位矢量 则△ABC为等腰矢量△,BC⊥AD
有
——衍射矢量方程
第三节 厄瓦尔德(Ewald)作图
3.1 原理
衍射矢量方程可以用等腰矢量三角形表达,它表明入射线方向、衍射线方向和倒易矢量之间的几何关系。这种关系说明:要使(HKL)晶面发生反射,入射线必须沿一定方向入射,以保证反射线方向的矢量端点恰好落在倒易矢量的端点上,即的端点应落在HKL倒易点上。
由于晶体中存在各种方位和各种面间距的晶面,因此当入射线沿一定方位入射时,可能同时有若干束衍射线发生,则可用厄瓦尔德图解法求衍射线束的方向。设有n族面符合反射条件,则可作n个衍射矢量三角形,该三有形以C为顶点,为一公共边,各自的倒易阵点至C≡称厄瓦尔德球或反射球。
3.2 作图,它们构成一个球面,1.作晶体的倒易点阵,O*为倒易原点。
2.入射线沿OO*方向入射,且令
3.以O为球心,以为半径画一个球——称反射球。
若球面与倒易点P相交,连OP1则有
因OO*=OP1=,故△OO*P为与衍射矢量方程图解等效的等腰矢量三角形,OP1是一衍射线方向。
同理,P2是落在反射球面上的另一倒易点,OP2是另一衍射线方向。由此可见,当X-ray沿OO*方向入射,所有能发生反射的晶面,其倒易点都应落在以O为球心,以1/λ为半径的球面上,即在球面上的倒易阵点可以反射,不在球面上的倒易阵点一定不可反射,从球心O指向倒易点的方向是相应晶面反射线的方向。
以上求衍射线方向的作图法称厄瓦尔德图解。
第四节 劳埃方程组
由衍射矢量方程:
劳埃方程组由衍射矢量方程推出,也表明了特定平面组能否反射的必要条件——即在晶体中如果有衍射现象发生,则上述三个方程必须同时满足,即三个方向的衍射圆锥面必须同时交于一直线,该直线的方向即为衍射线束的方向。劳埃方程组典定了X-ray衍射的理论基础。布拉格方程典定了晶体结构的基础。