人工智能小论文[大全五篇]

第一篇:人工智能小论文

       《信息管理新发展讲座》大作业(小论文)题 目:人工智能应用前景的探究

       学期: 2022-2022(1)

       人工智能应用前景的探究

       摘要:人工智能是计算机学科的一个分支,自二十世纪七十年代以来被称为世界三大尖端技术(空间技术、能源技术、人工智能)之一,也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。就是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。

       人工智能是,一门研究人类的智慧机理、以及如何使用机器来模拟人的智能的学科。从后一种意义上来讲,人工智能又被人们称为“机器智能”或“智能模拟”。人工智能是在近代--现代电子计算机出现之后--才发展起来的,它一方面成为人类智慧的延伸,另一方面又为探究讨论人类智能机理提供了崭新的理论以及研究方法。人工智能一直都处于计算机技术的最前沿,长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。

       关键词:人工智能 仿生学 数据挖掘 “图灵实验”

       一、引言

       近30年来,随着计算机的发展,人工智能已对现实社会包括虚拟社会做出了特别巨大的贡献,其作用已经在各领域发挥到极致,特别是在有关的计算机领域,人工智能的应用更加突出,可以说,哪里有计算机应用,哪里就在应用人工智能;哪里需要自动化或半自动化,哪里就在应用人工智能的方法、技术和理论。目前,人工智能应用的主要的领域,也就是计算机应用的主要领域。

       二、文献综述

       2.1计算机与人工智能

       1936年,24岁的英国数学家图灵(Turing)提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。

       人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

       当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。

       2.2人工智能研究的3个热点

       (1)智能接口

       智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。(2)数据挖掘

       数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。(3)主体及多主体系统

       主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。

       多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。

       三、当前的发展与应用的调查

       3.1 人工智能当前的研究领域

       尽管人工智能的理论体系还不够完善,不同学派和专门在理论和研究策略上持有不同看法,但这些不足以成为影响人工智能发展的因素,相反,人工智能的研究已经变得更加深入、客观和全面。人工智能现在的研究领域众多且复杂,主要有3个方面。

       3.1.1 机器思维

       机器思维主要是模拟人类的思维功能。在人工智能领域,机器思维一般研究的是推理、搜索、规划等。推理就是根据已有的事实和经验,采取某种合适的方法,利用所学知识得出正确结论的过程。搜索是已知搜索的目标,为了找到搜索目标,不断查找推理路线,引导和掌握推理过程,从而解决问题的过程。规划作为一种重要的问题求解手段,先从一个特定的问题状态出发,查找并建立一个可以操作的序列,直到最终状态为目标状态的一个行动过程的分析。一般的问题求解技术往往解决的是抽象的数学问题,注重结果,而规划更侧重于求解的过程,并且解决的是真实世界的问题。

       3.1.2 机器学习

       机器学习是一个复杂的过程,按照对人类学习方式的模拟,机器学习一般分为联结和符号学习。符号主义学派支持符号学习的机器学习观点。符号学习通过在功能上模拟人类学习来达到学习目的。按照这种观点,知识可以用符号来表示,机器学习过程其实就是一种符号运算过程,联结学习也称为神经学习,它是基于人工神经网络的学习方法。

       3.1.3 机器感知

       机器如果要像人类那样获取对外界的感知,那么机器必须拥有机器感知的能力,即学习掌握机器视觉、模式识别并且理解自然语言,其中模式识别是人工智能最早的研究领域之一。模式识别的大体含义就是,能在混合的事物中,根据要求,准确地对所需事物进行鉴别,并且完成正确分类。识别的对象不受物理、化学、生理等条件的限制,其类型也可以是文字、图像、声音等。模式识别包含几个基本步骤:(1)采集待识别对象的原有模式;(2)模式比较和匹配;(3)完成模式匹配后,进行分类处理,最后输出结果。

       3.2 人工智能当前的现实应用

       人工智能已经发展了60多年,其发展领域不再单一,人工智能的应用如雨后春笋般出现在各个领域,从学术研究到实际开发,从家庭到社会,智能已经走入人们的生活。例如智能手机,智能手环,智能交通等,其中最典型的应用包括智能机器人、智能检索、智能游戏。机器人是一种具有人类的某些智能行为的机器。机器人是一门综合性的科技类学科,广泛地被应用到仿生学、智能传感、系统工程和心理学等领域。例如,可按照应用领域将机器人分为家用机器人、工业机器人、农业机器人、军用机器人、医疗机器人、空间机器人、水下机器人、娱乐机器人等。机器人研究的主要目的有两个:

       (1)从应用方面考虑,让机器人帮助或代替人类完成一些人类不宜从事的特殊环境的危险工作,以及一些生产、管理、服务、娱乐等工作;

       (2)从科学研究方面考虑,机器人可以为人工智能理论、方法、技术的研究进行全面研究,以推动人工智能学科自身的发展,可见,机器人既是人工智能的一个研究对象,同时又是一个人工智能的试验场。现阶段学者虽然已经研制出来一些可以模拟人类精神活动的电子机器,经过完善升级,这些电子机器将有希望超越人类的能力[1]。但是目前研制出的自动化系统或者机器人可以代替部分人类劳动,要使机器人真正具有像人那样的智能,还需深入研究。尤其是在机器人自学能力、分布协同能力、自然语言交互能力及情感的人性化功能方面,现有机器人离人类的自然智能还有相当的距离。智能检索是指利用人工智能的方法从大量信息中尽快找到所需的信息或知识。随着科学技术的迅速发展和信息手段的快速提升,在各种数据库中,尤其是因特网上,存放着海量的信息和知识。面对这种信息海洋,迫切需要相应的智能检索技术和智能检索系统来帮助人们快速、准确、有效地完成检索工作。游戏技术与计算机技术的结合,产生了“计算机游戏”或“视频游戏”,与网络技术的结合产生了“网络游戏”,与人工智能的结合产生了“智能游戏”。游戏中的角色可分为玩家角色和非玩家角色。所谓玩家角色就是指其行为可以由玩家通过操纵杆等输入设备控制的角色。玩家角色是指不由玩家控制的角色,它是游戏智能的主要体现者。所谓智能游戏,是指游戏中的非玩家角色具有一定的智能行为的游戏。

       四、数展前景的研究分析

       4.1更好地为人类服务

       随着技术的成熟与进步,以及媒体的跟踪报道,人工智能这一领域受到社会各界的广泛关注,越来越多的资金和精力将投入人工智能这个领域,智能产品、智能服务必将更好地服务人类。现在火热的智能手环,可以用来观测心率和运动量;苹果公司的智能手表,功能不再局限于对时间的定位,将手表与手机无线连接,可以作为通信工具;智能家电、智能厨电,可以通过软件操作与手机连接,实现远程控制,不在家也可以自由控制。人工智能在各个领域为大家带来众多便利,这也是今后的主要发展方向[2]。

       4.2与人平等

       目前,人工智能已经可以帮助人类处理一些简单的事情,因此,对于初级、重复性高的简单劳动者来说,他们的岗位很可能会被自动化。尤其是服务行业,比如收营员、室外作业员、家政保姆,他们的地位就变得岌岌可危。生产力的解放必然带来低端作业者工人的大范围失业。但对此也不必过于担心,对于科技智能本身而言,许多职位反而会有更多的需求,人工智能可能会催生许多新的工作机会,如与机器人相关的训练、服务行业[3]。

       4.3威胁人类发展

       人工智能体,尤其是机器人的出现,引发了人类对人工智能体道德和机器人伦理的思考。随着技术的更新,机器变得更为复杂,这时,人工智能就朝着“功能型道德体”机器发展,这类机器人有能力与道德挑战相关的情况进行评估和作出反应。而功能型机器人的创造者同样也面临着许多限制,这从根本上归咎于当前的技术发展。我们应该认识到人工智能体,至少在理论上,最后可能会成为具有权利和义务的、能够和人类相媲美的真正意义上的道德体[4]。人工智能体是否应该独立作出道德决定,由人工智能体作出的道德决定对人类是否有益,这一系列问题的出现是技术发展与传统哲学的相互影响的必然结果。例如,家用机器人、伙伴机器人、性玩具、甚至军用机器人,这些人造体在与人类的交互关系中逐步替代了传统的人机关系,智能不断发展的过程可能会出现无法预测的质变,导致人工智能拥有与人类完全一致的思维,超过人类智慧,很容易出现违反人类道德但与逻辑相符的情况,这必然会对人类的发展带来严重的危机。此外,人类对一种机器的长期使用,会产生依赖感,导致人类原有的思索、行动、学习等能力得下降,从而威胁人类发展。

       五、结束语

       技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。

       目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

       人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。许多科学家预言,机器的智慧会迅速超过阿尔伯特·爱因斯坦和斯蒂芬·霍金的智慧之和。著名物理学家斯蒂芬·霍金认为,就像人类可以凭借其高超捣弄数字的能力来设计计算机一样,智能机器将创造出性能更好的新一代计算机。最迟到本世纪中叶而且很可能还要快得多,计算机的智能也许就会超出人类的智能,这就是人工智能的魅力。

       参考文献

       [1]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技,2022(10):107-108.[2]倪晨旭.浅谈人工智能未来发展趋势[J].科技创新与应用,2022(23):70.[3]王东浩.人工智能体引发的道德冲突和困境初探[J].伦理学研究,2022(2):68-73.

第二篇:人工智能论文

       人工智能论文

       摘要:本文主要讲述了《人工智能及其应用》的主要知识内容!总结与本书知识单元相关的主要内容、理论基础、代表性成果及方法。并以书中知识为基础,查阅资料,浅谈人工智能在自动化技术中的应用!

       关键字:人工智能;自动化

       《人工智能及其应用》主要内容

       人工智能(Artificial Intelligence,AI)是当前科学技术发展的一门前沿学科,同时也是一门新思想,新观念,新理论,新技术不断出现的新兴学科以及正在发展的学科。

       它是在计算机科学,控制论,信息论,神经心理学等多种学科研究的基础发展起来的,因此又可把它看作是一门综合性的边缘学科。

       它的出现及所取得的成就引起了人们的高度重视,并取得了很高的评价。有的人把它与空间技术,原子能技术一起并誉为20世纪的三大科学技术成就。《人工智能及其应用》一书主要介绍人工智能问题求解的一般性原理和基本思想,为学生提供最基本的人工智能技术和有关问题的入门性知识。

       人工智能研究的基本内容有:知识表示机器感知、机器思维、机器学习、机器行为。其研究途径存有:以符号处理为核心的方法,其主张通过运用计算机科学的方法进行研究,实现人工智能在计算机的模拟。目前人工智能的大部分研究成果都是基于前者方法实现的。还有一种是以网络连接为主的连接机制方法。主张用生物学的方法进行研究,搞清楚人类智能的本质.该方法在模式识别、图像信息压缩等方面取得了一些研究成果。

       人工智能的主要研究领域有:自动定理证明和博弈、模式识别、专家系统、机器人、机器视觉、自然语言理解、自动程序设计、智能信息检索、数据挖掘与知识发现、组合优化问题、人工神经网络、分布式人工智能、智能管理与智能决策、智能控制、智能仿真、智能CAD、智能CAI、智能操作系统、智能多媒体系统智能计算机系统、智能通信、智能网络系统。人工智能研究搏奕的目的并不是为了让计算基于人进行下棋、打牌之类的游戏,而是通过对搏奕研究来检验某些人工智能技术是否达到对人类智能的模拟,因为搏奕是一种智能性很强的竞争活动。

       知识表示

       知识是智能的基础。为了使计算机具有智能,使它能模拟人类的智能行为,就必须使它具有知识。但知识是需要用适当的模式表示出来才能存储到计算机中去的,故许多人研究知识的表示方法!

       知识的表示方法有:一阶谓词逻辑表示法、产生式表示法、框架表示法、语义网络表示法。一阶谓词逻辑表示法多应用于自动问答系统(例如Green等人研制的QA3系统)、机器人行动规划系统(Fikes等人研制的STRIPS系统)、机器博弈系统(Filman等人研制的FOL系统)、问题求解系统(Kowalski等设计的PS系统)。语义网络表示法的应用也很广泛,例如Walker 研制的自然语言理解系统,Garbonell 研制的回答地理问题的教学系统,Mytopoulous 研制的自然语言理解系统,Simmon 研制的自然语言理解系统,Hays研制的描写概念的系统。一般把把一组产生式放在一起,让它们相互配合、协同作用,一个产生式生成的结论可以供另一个产生式作为已知事实使用,以求得问题的解,形成一个产生式

       系统。动物识别系统就是利用产生式系统做成!

       推理

       推理是人脑的基本功能,推理也是人工智能的重要内容!

       在人工智能中,认为推理是从已知事实(证据)出发,通过运用相关知识逐步推出结论或者证明某个假设成立或不成立的一个思维过程。其推理方法有确定性推理和不确定推理等。确定性推理方式分为演绎推理、归纳推理、默认推理。分为自然演绎推理 和归结演绎推理!且归结演绎推理一般应用谓词公式化为子句集的方法,应用海伯伦定理 和鲁宾逊归结原理,以及应用归结反演求解问题。其推理的方向分为正向推理、反向推理、正反向混合推理、双向推理。其冲突消解策略有按针对性排序、按已知事实的新鲜性排序、按匹配度排序、按条件个数排序、按上下文限制排序、按冗余限制排序、根据领域问题的特点排序。AI 的研究对象,大多具有不确定性。大多用不确定性推理法。

       人工智能定义不确定性推理为从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的一种思维过程。不确定性推理方法有概率方法、经典概率方法、逆概率方法主观Bayes方法、可信度方法、证据理论、模糊推理方法。

       搜索求解策略

       搜索是问题求解的核心技术!

       搜索求解策略分为盲目的图搜索和启发式图搜索策略,以及与/或图搜索策略。盲目的图搜索策略有分为回溯策略、宽度优先搜索策略、深度优先搜索策略。搜索方向分为双向搜索、盲目搜索与启发式搜索。

       自动化

       自动化是研究与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是自动化和人工智能研究的交汇点。积极运用人工智能的知识。

       自动化设备和机器的关键就在于反馈的存在,正是有了他的存在,才使自动化成为可能。反馈就是自动化的奥妙所在。

       如今自动化的前沿技术有:模糊控制、最优控制、自适应控制、鲁棒控制、线性控制理论纵横、PID控制、预测控制、故障诊断、专家系统、推理控制、集散控制系统(DCS)、人工智能。

       人工智能在故障诊断中的应用

       人工智能在故障诊断中的应用。随着现代科学技术的发展,故障诊断技术和方法也不断推陈出新,正走向智能化阶段。人工智能的发展为故障诊断提供了智能化的诊断方法.故障诊断专家系统不仅在理论上得到了相当大的发展.人工神经网络的研究也进入到了故障诊断领域,并大力发展,并已在许多实际系统中得到了很好的应用。此外.模糊理论、模糊逻辑系统也已经应用到故障诊断领域,并且与人工神经网络和专家系统互相结合,突显出其独特的优势,成为一种很有价值的故障诊断方法。

       人工智能在电力系统运行控制中的应用

       因为人工智能技术(AI)广泛应用于求解非线性问题中,在电力系统的控制、管理、运行等领域发挥着重要的作用。专家系统、人工神经网络、模糊集理论和启发式搜索等人工智能技术在电力系统中被广泛应用!

       人工智能在智能传感器领域的应用

       人工智能也广泛应用于智能传感器领域。大家都知道传感器在自动化信息系统中的重要性不言而喻 ,它的特性的好坏、输出信息的可靠性对整个系统的质量至关重要。结合人工智能的四个分支 :模糊逻辑、人工神经网络、专家系统、遗传算法而广泛应用传感器领域。并而人类在人工智能方面取得的进展为人工智能与传感器技术的结合。造就了许多新型智能传感器的出现!

       人工智能在电气传动中的运用

       人工智能在电气传动中也被广泛运用。智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中得到广泛应用。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。

       自动化技术在各行各业中被广泛应用!例如自动化技术在工业中的应用:自动化的制造业、电力系统自动化、建筑自动化、交通运输自动化、信息自动化、自动无极限。自动化技术在军事中的应用:新型自动化武器,军事指挥自动化。自动化在生活中的应用更是比比皆是!总而言之,自动化技术结合人工智能让我们的生活越来越美好!

       参考文献

       [1]:王万良《人工智能及其应用》(第2版)高等教育出版社,2022.6

第三篇:浙江海洋学院人工智能小论文

       浅谈人工智能

       在不少的科幻的电影中,我们都能看见在我们的未来的生活中机器人不再只是一味的去执行一个个死板的动作,而是可以根据人们的需求自主的去做一些东西,甚至有些机器人还有感情,他们不再只是遵循人类的命令,他们有自己的思维,有自己的理想,可以这么说,他们是人类制造的另一个物种。

       不过再多的幻想终究只是人们美丽的梦想,人类的科学技术尚未达到如此地步,但是其中有一项至关重要的技术正在蓬勃发展当中,那就是人工智能。

       人工智能(Artificial Intelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学

       目前,人工智能技术在美国、欧洲和日本依然飞速发展。在AI技术领域十分活跃的IBM公司,已经为加州劳伦斯·利佛摩尔国家实验室制造了ASCI White电脑,号称具有人脑的千分之一的智力能力。而正在开发的更为强大的新超级电脑———“蓝色牛仔”(Blue Jean),据其研究主任保罗·霍恩称,“蓝色牛仔”的智力水平将大致与人脑相当。

       说了这么多,我相信我们已经对人工智能有所了解,但是我们的生活当中真的有人工智能这种东西吗?回答当然是肯定的,在生活中人工智能给了我们巨大的方便,只是我们忽略了许多。

       交通:智能系统实现安全畅通

       智能交通系统ITS(Intelligent Transportation System)是一种先进的运输管理模式。人工系统主要利用计算机仿真技术,通过监测人们出行的行为计算交通流。比如上下班、接送小孩、上街等产生的交通流,进而研究不同时段的交通特征。人工系统不仅可以作为学习、管理的中心,培训交通管理员和操作员,还可以作为实验与评估的工具。比如,人工系统可以模拟交通事故或恶劣天气,以此观测紧急情况造成的道路拥堵情况和对其他路段的影响。

       一个成功的智能交通系统,要做到人、车、路整个大系统的协调,通过搜集信息来计算:路能容纳多少车,客流量需要多少车,车怎么发挥最大的效益,最终做到有人必有车,有车必有路

       农业:专家系统会诊作物生长 农业方面,人工智能的应用有一个很重要的部分——农业专家系统。农业专家系统用来做什么?众所周知,专家系统是一类包含知识和推理的智能计算机程序。农业专家系统可以代替农业专家群体走向地头,进入普通农家,并指导农民科学种田。

       农业专家系统包含了农业各个领域的专家经验、知识,如作物栽培、植物保护、配方施肥、农业经济效益分析等等。例如,针对作物不同时期和不同环境条件出现的各种症状,诊断可能出现的病虫灾害,病虫害防治专家系统提出了有效的防治方法。栽培管理专家系统是在各个作物的不同生育期,根据不同的生态条件,进行科学的农事安排,包括栽培、施肥、灌水、植物保护等。

       医学:机器代替专家看病

       世界上第一个专家系统DENDRAL是化学分析专家系统,于1968年研制成功。9年后,我国也有了第一个专家系统——中医关幼波肝炎诊断治疗程序,这也是国际上第一个中医专家系统。然而,人工智能在医学上的应用还远远不止这些。最近,就有苏格兰的一家假肢制造公司推出了一种每根手指都装有电动机的人造手,能够帮助患者抓取东西、操作键盘等。此外,将微型智能机器人应用在体内手术上,不用开颅,开一个小口,把机器人放进去,到指定的位置疏通血管或者切除病变组织;或是把胶囊形状的图像探测机器人吞入腹中,消化道的图像就可以显示出来,达到检查消化道的目的。随着科学家们对人类大脑和神经系统的研究越来越多,许多科学家断言:机器的智能会迅速超过阿尔伯特·爱因斯坦和霍金的智能之和。到21世纪中叶,人类生命的形式也许会发生变化。智能芯片的植入将增强人类的思考能力,并且开始向一种新型的人/机复合智能形式过渡。

       家居:个性化的生活方式

       智能家居系统——为普通消费者提供人性化、主动管家式的服务系统。当主人外出时,可以命令各种系统自动工作,比如关掉冷气、音响和电视机的电源,接电话自动留言等。当主人回家后,可以发出指令,打开空调,调节室内光线,开启自动做饭系统做饭、煮咖啡等。不少科学家目前还在构想未来的智能化厨房,它将通过互联网与超市相连。用扫描仪记录冰箱中食品的条形码,将信息送入计算机;当食品快用完时,它就会自动打出订货清单,通过互联网送到超市,商店则会及时发送当天订购的货物;如果储存的食品将要超过保质期,冰箱还会自动发出警告。

       “然而,目前的智能家居还处于研究试验阶段。”王飞跃解释说,“成本是最大的问题,而另一个更加重要的条件是将人的因素放入智能家居系统的研究中,不能让人改变自己去适应这个系统,一定是这个系统符合人的心理。现在的智能家居只适合高智能的人使用,而不适合普通人使用。人们真正需要的是傻瓜型的智能家居,能体贴到用户的需求并方便‘交流’的智能家居。”

       当然真正的人工智能离我们还很远,只是人工智能的皮毛却已经使人类更加的方便,更加快捷,只是我们是否想过利剑双刃,有其利,必有其弊。

       从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中推荐最畅通的线路;帮助识别信用卡诈骗等。虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。人们总是趋向于安逸的生活,人工智能的出现满足了人们许多的需求,这会导致人们满足于享受当前的生活而忘记许多自己的本能。根据达尔文的进化学说,那些我们不在经常使用的本能会在生物的繁衍中逐渐的退化消失。人工智能化的发展,我们的衣食住行都可以有简单的解决方法,并且也越来越为人们所依赖。就像过去几千年我们没有电话手机,一样可以有自己的通讯方式,可是现在手机发展不过几十年,就没有几个人能离得开手机了。试想一下日益进入我们生活中的人工智能,等你习惯后还能离得开吗。如果有了人工智能,你什么都不用自己动手,那经过生物衍变,人类的未来还能剩下什么呢。经过退化衍变的人类还有什么能力呢。

       现阶段人工智能在专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等方面都有许多的应用,并且范围越来越广,虽然看似都是促进科学发展的,但是我们得注意其使用的度,就像克隆的应用一样,具有双面性的东西在发展时都应该慎重考虑。人工智能智能作为一种工具被人类智能限定在一定的范围里发展,才能在保证其安全的条件下最大程度的为人类发挥作用。

第四篇:关于人工智能的论文

       人工智能(Artificial Intelligence, AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性学科。人工智能又称为智能模拟,是用计算机系统模仿人类的感知、思维、推理等思维活动。它研究和应用的领域包括模式识别、自然语言理解与生成、专家系统、自动程序设计、定理证明、联想与思维的机理、数据智能检索等。例如,用计算机模拟人脑的部分功能进行学习、推理、联想和决策;模拟医生给病人诊病的医疗诊断专家系统;机械手与机器人的研究和应用等。

       人工智能开拓者是罗伯特·维纳。1940年他创立了控制和传递。维纳认为计算机在组织和传递信息方面可能比人类更准确。从理论上讲,计算机在控制周围环境和外界通讯时会比人类更准确人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(artificial intelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

       人类进化以来,为了扩大自身的能力,已经发明了很多不同的工具,如:棍棒、斧子、犁、轧棉机、蒸汽机、无线电收音机和电视机等。早在13世纪,就曾提出过自动机器或机器人的设想。从17世纪到18世纪,机械自动装置变得普遍起来,当时出现了能跳舞或能演杂技的娃娃,它们附在发出乐曲的小盒子和时钟上,随着19世纪的工业和20世纪初叶自动化工厂的出现,人们担心机器会取代人。早期的科学幻想小说重复出现机器人接管世界的题材。直到50年代出现了电子计算机,人们可以进行加减运算,完成以前只有人类才能完成的活动。例如分类、比较,根据先前的结果改变自己的工作程序等等。

       但早期的计算机体积大,可靠性差,价格昂贵,因而人们认为要计算机模拟人工智能的尝试是注定要失败的。很早以前,人们就对自动化机器的理论有过重大的贡献。其中最突出的是卓越的数学家诺依曼。诺依曼认为,人类神经系统与计算机的电子电路有许多相似之处。人类的神经系统通过刺激或休止(称为神经动脉)来传递信息,而计算机用类似的二进制码“0”或“1”传输信息,数码“1”在计算机内部表示“通”状态,就象刺激神经细胞,数码“0”则表示“断”状态,就象神经细胞未受到刺激一样。在我们日常生活中,无论是看、听、触摸,都是用和计算机二进制码十分相似的双态码来传输信息的。

       当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮

       最初,人工智能实验都是游戏性质的,主要是下棋一类的游戏。代写论文选择游戏作为实验内容并非出于消遣,而是由于它与其它解决问题的方法有颇多的相似之处。做游戏时,必须判断和决定多种选择,需作短计划和长安排。一般都有进攻战略和防御战略;必须遵照一定的规则。要想取得一场游戏的胜利,就必须设法做到失的最少得的最多。游戏中出现的各种情况都需作出判断和抉择,这如同日常生活中经常遇到的问题。作出抉择需要聪明和智慧。在人类解决方法的研究方面,计算机是一个极好的工具。

       人工智能的两大目标就是能理解人类的智能,使计算机用途更广泛。许多研究者认为:智能机器的关键总是如何表达知识,从而使计算机能用这种知识将知识具体应用在计算机程序中虽

       然必要,但很困难。即使回答日常生活中的极简单的问题,也需要大量的知识,而且其中许多知识我们是不知道的。

       现在主要有两种类型的机器人:工业机器人和智能机器人。这两种类型都是人工智能研究者的研究范围,但重点在智能机器人上。他们集中力量研究感觉上的认识,以及这些认识如何用计算机来表达,人们已经研制出计算机辅助视觉和听觉装置、计算机辅助活动肢体和其他用微机控制的假体装置。用智能机器人来探查海底和太空的奥秘更为实际,因为在这些环境中工作既艰难又危险。研制一种不需要人参与就能完成探索工作的智能机器人,以便让他们到宇宙空间去探索。由于这项工作远离地球,用人类控制的机器人就不适宜了。现在美国国家航空和航天局使用的机器人是完全独立的,它能采集岩石,收集土壤和其它勘探的研究项目,这些工作都不用人指挥。无论如何,在真正智能化的自主机器人制成之前,研究者们必须首先更深入地掌握、控制人类行为过程的奥秘。通过计算机科学家、神经学家、生理学家的共同努力,我们已逐渐对人类的视听、触摸、感觉和四肢移动的方法有了更深的了解。但是,还留下一个最困难的、或许也是最重要的领域需要征服———这就是语言。

       计算机目前还没能完全理解语言的复杂和细微的差别。至于自然语言的计算机翻译器,在初期研制阶段,对算法上规范化的句子,就已经显示出相当高的理解力和造句能力。不过,在抓住句子的意思这一点上,还未获得过显著的成就。我们懂得的东西大量来自上下文关系和我们的知识。人们的生活中,个人、社会和文化见解对句子上附着的意义施加了很大的影响,试图定量表示人类对语言的理解无疑是人工智能研究领域中最复杂的问题之一。

       在人工智能研究中,使用计算机产生了很多意义深远的课题。通过人工智能的研究,人们对人类的精神能力和身体能力都有了更深入的了解。在工业上,人工智能专家们已研制出工业机器人和智能机器人,以便完成单调、危险及困难的工作。使人类解放出来,把他们的时间更有效地用于创造性的研究、设计,以及人们之间的相互交往等人类特有的活动中去,这便是人工智能各种应用的推动力。在医学和其它高级科学技术领域内,由于人工智能的进展,那些离开计算机就解决不了的难题正获得解决。

       人工智能研究工作的进展和困难将会极大地影响人工智能研究的未来。计算机体积的缩小和成本的下降对人工智能的影响不是最重要的,发展的主要限制来自软件。语文障碍的克服,或者在什么时候克服,无疑将是今后发展人工智能的关键。正如我们所看到的那样,为了使计算机理解自然语言,并具有智能行为,必须使探索、知识表达,自然语言等主要研究领域结合起来,形成一个系统。与此同时人工智能的研究将继续对许多学科产生深远的影响。

第五篇:人工智能学习论文

       20227932唐雪琴

       人工智能研究最新进展综述

       一、研究领域

       在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

       在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

       二、各领域国内外研究现状(进展成果)近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。

       1、分布式人工智能与艾真体

       分布式人工智能(Distributed AI,DAI)是分布式计算与人工智能结合的结果。DAI系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。

       分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。DAI中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(Multiagent System,MAS)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而MAS则含有多个局部的概念模型、问题和成功标准。

       MAS更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动

       态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和MAS的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、MAS学习和应用等。MAS已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。

       2、计算智能与进化计算

       计算智能(Computing Intelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。

       进化计算(Evolutionary Computation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(Genetic Algorithms)、进化策略(Evolutionary Strategies)和进化规划(Evolutionary Programming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。

       达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。

       直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。

       3、数据挖掘与知识发现

       知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。

       从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。

       机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。

       比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的CoverStory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统EXPLORA,交互式大型数据库分析工具KDW,用于自动分析大规模天空观测数据的SKICAT系统,以及通用的数据库知识发现系统KDD等。

       4、人工生命

       人工生命(Artificial Life,ALife)的概念是由美国圣菲研究所非线性研究组的兰顿(Langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。

       人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(life as it could be)的广阔范围内深入研究“生命之所知”(life as we know it)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。

       人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。

       人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。

       三、学了人工智能课程的收获

       (1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

       (2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

       (3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、A*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。

       (4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。

       (5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。

       (6)基本了解人工智能程序设计的语言和工具。

       四、对人工智能研究的展望

       对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,CAD,CAM,CAI,CAP,CIMS等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。

       人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。

       当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以Agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向Agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。

       五、对课程的建议

       (1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。

       (2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》

       系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。

       (3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。

       (4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些

       新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。