圆的周长教学设计(通用15篇)

  圆的周长教学设计 篇1

  设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  教学内容:

  《义务教育课程标准实验教科书 数学》人教版六年级上册第89-91页《圆的周长》

  学情与教材分析:

  本节课是在学生学习长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识:它们的周长就是围成它一周的长度,这为学生认识、概括、归纳圆的周长提供知识技能基础。在教法上,以“铺垫孕状——新知探究——新知运用”为主线,又在各个环节中设置由浅入深,由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  教学目的:

  1、理解圆的周长和圆周率的意义,推导圆的周长公式,并能正确计算圆的周长。

  2、通过动手实践,自计探索与合作交流等活动发现和理解圆的周长的计算方法。

  3、在探究中体验成功,增强信心。

  4、结合圆周率的教学,激发学生的爱国热情。

  教学准备:

  老师:课件、直尺、纸剪的圆、系有小球的绳子两具啤酒瓶、绳子。

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  教学过程:

  一、创设情境,导入新课

  1、课件播放:机器人轿车和跑车在两个赛道上比赛,轿车沿着正方形路线跑,跑车沿着圆形路线跑。

  2、想一想

  (1)要求轿车所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量了它的什么就可以?能说出你的依据吗?

  (2)要求跑车所跑的路程,实际就是求圆的什么呢?板书课题:圆的周长。

  3、从图上可以看出,圆的周长是一条什么线?谁来说说什么圆的周长?

  【设计意图:利用课件演示,引导学生逐步认识圆的周长,归纳圆的周长的意义,突出正方形周长与它的边长的关系,加深学生对圆的周长的理解,为后继教学“圆的周长与直径的关系”作学习策略上的铺垫。】

  二、引导探索,展开新课。

  1、感知、测量:用手摸圆的一周<纸剪的圆>

  (1)师演示用直尺测量圆的周长,你觉得怎样?能不能想出一个好办法来测量圆的的周长呢?

  (2)利用学具操作,用不同方法测量圆的周长。

  (3)想一想:用这些方法测量圆的周长有什么共同特点?

  [设计意图:本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系。”]

  2、合作研究:圆的周长与直径有什么关系?

  (1)猜一猜:(老师拿出一个一端系有小球的绳子,手执另一端并不停地转动形成一个“圆”),你们还能利用刚才的方法测量出这个圆的周长吗?圆的周长可能与它们有关?

  (2)比一比:同桌合作,用绕圆一周的彩带跟学具的圆的直径比一比,看它们有什么关系?

  (3)算一算:小组合作,量出圆的周长和直径,算出圆的周长和直径的比值。

  【学情预设:由于测量有些误差,其结果有所不同,可让学生通过争辩来统一认识】

  (4)、议一议:计算结果有不同,你发现了什么?

  (5)、得出结论:通过以上活动,你发现圆的周长和直径之间有什么关系?

  【设计意图:本设计从学生实际出发,通过量一量、想一想、猜一猜、比一比、算一算、议一议等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的关非纯粹的知识本身,更主要的是态度、思想方法,是一种探究的品质】

  3、认识圆周率

  (1)揭示圆周率的概念

  这个3倍多一些的数,是个固定不变的数,称之为圆周率。圆周率一般用字母∏表示。

  指导读写

  (2)指导阅读第90页方框中的文字,了解让中国人引以为自豪的历史,介绍近代大于圆周率的研究成果。

  4、推导圆的周长的计算方式

  (1)问:已知一个圆的直径,该怎样计算它的周长?板书:C=∏d,学生任意挑选一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

  (2)问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:C=2∏r

  (3)问:转动木条形成的圆的周长你会求吗?

  (4)小结:要求圆的周长,一般需要知道它的直径或半径。

  【设计意图:本设计通过学习自主的“探究—发现”,进一步理解周长与直径的关系,理解圆周率的意义。通过问题的层层深入,圆的周长公式就推导而出。】

  三、初步运用,巩固新知

  1、辨析、判断

  (1)圆的周长是它直径的3倍多一些 ( )

  (2)圆的周长是它直径的3.14倍 ( )

  (3)圆的周长是它直径的∏倍 ( )

  2、教学例1

  (1)在生读题后,问:求这张圆桌的周长是多少米?实际上是求什么?

  (2)学生尝试,反馈评价。

  3、完成第91页中间的“做一做”。

  【设计意图;通过判断题的判断,加深了学生对圆的周长和直径间关系深刻认识,并有一个正确的认识。对桌面周长的计算,培养了学生对知识运用的能力,了解了数学与生活的联系业务,让学生获得不同程度的成功体验】

  四、全课总结、

  1、请学生说说收获。

  2、回放两车比赛的课件;算一算,哪辆车跑的路程长?

  3、生活中的数学

  师演示;把两个啤酒瓶捆扎在一起。啤酒瓶的直径是T厘米,如果只扎一圈,至少要多少厘米绳子?(接头处不算)

  设计思路

  着名教育学家布鲁纳指出“探索是数学的生命线”。本设计求为学生创设“探究——发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华。

  一、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,

  是一种“再创造”的过程,在这个过程中,实践操作是最基本、最重要的手段和方法之一。本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  二、在探究中发现

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过量一量、想一想、猜一猜等活动,让学生在亲身经历数学知识的操究过程中发现知识、理解知识、应用知识。这样学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  三、在经历圆周率的研究历史中,渗透数学文化和数学思想。

  在教学设计中,学生通过动手实验,得出圆的周长和直径的比值,进而介绍祖冲之的研究成果,最后,介绍看守代关于圆周率的研究成果。在这个过程中,使学生经历了圆周率的研究史,渗透数学文化和数学思想方法。同时,使学生产生情感的共鸣、丰富学生的情感体验,发展学生的情感、态度和价值观。

  四、在实践中体会到知识的价值

  在教学设计中,让学生用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  圆的周长教学设计 篇2

  教学目标:

  1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会通过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。

  教学过程

  一、情景导入:

  师:老师这里有一张图片,同学们想看吗?

  师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?

  师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?

  师:这节课我一起研究圆的周长。

  板书课题:圆的周长

  二、探究新知:

  1、圆的周长含义

  师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。

  师:围成圆的曲线的长叫做圆的的周长。

  2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。

  师:谁愿意说说你是怎么测量的?

  师:还有不同测量的方法吗?

  师多媒体演示。

  我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。

  我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。

  师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。

  生:用绳子量出水池的周长。

  师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。

  师:有没有比测量更科学、更简便的方法呢?

  生:计算

  3、探究圆的周长计算方法

  ①探究圆的周长与直径的倍数关系

  师:如何计算圆的周长呢?

  师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?

  师:计算正方形的周长需要什么条件,怎么计算?

  师 :同学们看,计算长方形、正方形的周长都需要一定的条

  件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。

  师:如果圆的周长与直径有关,又有什么关系呢?

  师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。

  师:正方形的周长与它的条件边长之间有什么关系。

  你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。

  这个倍数会是几呢?同学们来猜测一下,这个倍数大于几

  生1:大于2;

  生2:大于3;

  生3:大于4;

  师:能说说你是怎样想的?

  师:你从图上来看,圆的周长与直径之间的倍数会大于几。

  生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。

  师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?

  生猜并说理由。

  师:这个问题有点难,老师来作个辅助图形,请看大屏幕。

  (师多媒体演示圆外切正方形)

  师:你发现了什么?

  生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。

  师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?

  生:计算。

  师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。

  下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)

  师:一定注意要测量准确,减少误差。

  (集体汇报交流)

  师:哪个小组愿意把你们的计算结果给大家展示一下。

  (生说并展示结果)

  师:请同学们来观察这些圆的周长除以直径的商,有什么特点。

  生:都比3大一点。

  师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。

  师:会读吗?(板书pài)

  师:一起读,用手在桌子上写几遍。

  师:会写了吗?

  师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?

  生:测量不准确。

  师:很会分析问题,我们计算出的这些商都不一样,是因为测量有

  误差造成的。

  师:老师这里有关于圆周率的历史资料,同学们想看吗?

  师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)

  师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?

  师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书C=πd)

  师:如果知道了圆的半径,我们还可以怎样计算圆的周长?

  (板书:C=2πd)

  师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。

  由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)

  三、实践应用:

  师:现在我们来解决几个问题好吗?

  1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。

  2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)

  3、判断题

  4、思考题

  四、小结。

  圆的周长教学设计 篇3

  教材分析:

  这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

  教学目标:

  1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

  3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

  教学重点:

  通过多种数学活动推导圆的周长公式,能正确计算圆的周长。

  教学难点:

  圆的周长与直径关系的探讨。

  教学准备:

  多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

  2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)

  3.指名一生说说正方形的周长计算方法:(生:边长4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)

  二、经历探究全程,验证猜想发现。

  (一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

  1.谈话:那什么是圆的周长呢?(课件出示3个车轮)

  2.师:上面的3个数据是表示什么的?(生:圆的直径)英寸是什么意思?(学生看书回答)

  圆的周长教学设计 篇4

  课题

  圆的周长

  例题

  教学 目标

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能解决简单的实际问题。

  2、使学生通过操作、计算,发现规律,培养抽象、概括的能力和探索意识。

  3、通过介绍圆周率的史料,使学生受到中国古代在数学方面的成就。

  手记

  我在设计圆的周长这节课时,对圆周长概念的教学做了淡化处理,新教材对概念和老教材比已经大大弱化了。目标是让学生知晓,不必死抠字眼。我的设计,力图在已有知识和新知识之间找到衔接点,故而在正方形内接圆这一点上,为探究直径和圆周长的关系做了新的尝试。之后的教学,希望在自主探索中培养学生的动手操作能力。先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长公式的全过程,充分发挥学生学习的主体性,激发学生学习数学的兴趣。

  重难点

  教学重点:圆周长公式的推导。

  教学难点:圆周率的意义。

  教学过程

  资源

  目标

  学与教

  一、开门见山,直奔主题

  二、渗透“转化”,激发兴趣

  三、合作探究,发现规律

  四、运用新知,解决问题。

  五、知识回首,概括总结

  师生谈话,生活中的周长概念,教具。

  教具、学具,学生已有的生活经验

  学具、计算器、

  实验报告单

  习题

  实物感知,触摸圆的周长,既激发学生的学习兴趣同时,也形象的让学生建立圆周长的概念。

  让学生探索测量圆的周长的方法,渗透“化曲为直”的数学思想

  测量的局限性引出寻找计算方法的必要性。

  从猜想与观察中初步探寻周长与直径的关系。

  通过操作,收集数据,计算比对后发现规律。

  从周长与直径的比值引出圆周率的概念

  从圆周率概念中演变出圆周长的计算公式

  巩固运用、深化知识

  学生对整节课所学知识进行梳理

  (一)谈话引入,揭示课题。

  上节课,我们一起学习了“圆的认识”,今天我们一起来研究圆的周长。(板书课题)

  1、拿出一个圆片问:什么是圆的周长?请你指出老师手上圆的周长?再指出自己准备的圆形物体的周长。

  2、提问:圆的周长和我们以前学过的长方形和正方形的周长有什么相同的地方?又有什么不同?

  (出示长方形、正方形、圆的图,让学生进行比较)

  3、用一句话概括一下什么是圆的周长。

  4、归纳:围成圆的曲线的长叫做圆的周长。

  (二)探索测量圆的周长的方法

  (1)教师接着问:长方形和正方形的周长,我们能直接用尺子测量出来,但是圆的周长能直接测量出来吗?比如这样的一个圆(铁丝围成的圆形)

  生:拉直了再量一量。

  师:为什么要拉直呢?(引出化曲为直的思想)

  师再出示圆片问,这个能拉直吗?可以怎样得到它的周长?

  你有什么好的方法? (同桌讨论)

  汇报:(学生演示)

  a、可以把圆在直尺上滚动一周,测出周长。

  b、还可以先用绳子绕圆一周,测出绳子的长度,就是圆的周长。

  教师评价:同学们想出的方法很好。刚才的方法有一个共同的特点是什么?

  生:是把弯曲的线段转化为直的线段来测量。

  师:做校服量你的腰围是不是跟这个差不多呢?

  师板书:绕线法、滚动法——化曲为直

  (3)教师问:这样的方法有局限性吗?举几个例。

  生:比如说在操场上画的大圆的周长、广场上的圆形喷泉的周长、溜球绕在手指上旋转一周,形成了圆,它的周长不便用上面的方法。

  师:用图片展示嫦娥二号绕月飞行的圆形轨迹,引发学生的感慨:测量的方法有局限性,那么我们就要找出求圆的周长的普遍方法。

  (1) 观察并猜想:圆的周长会和什么有关?有怎样的关系呢?

  (三个直径不同的圆提示周长与直径有密切的联系。)

  (2)观察并思考:正方形与圆有何共同之处,圆的周长会超过直径的4倍吗?至少应大于直径的( )倍。

  (三)圆周长的推导。

  (1)探索圆周长与直径的关系。

  下面我们就来测一测,算一算,看看圆的周长和它的直径有什么关系?

  让4人小组的同学进行合作,分别测量出3个圆形物体的周长和直径,并把结果记录在表格中。最后观察数据,有什么发现?

  圆

  直径(厘米或毫米)

  周长(厘米或毫米)

  周长/直径(保留两位小数)

  圆1

  圆2

  圆3

  我们的发现

  (2)反馈。

  请学生上台来展示,并且说说发现。

  小结:同学们都发现了虽然我们测量的圆的大小不一样,但是圆的周长和直径的比值总是3倍多一点。

  (3)教师用软尺绕学具圆一周,再将软尺沿直径绕三次演示3倍多一些,加深3倍多一些的印象。

  3、教学圆周率。

  师:其实任何一个圆的周长和直径的比值都是一个固定的数。我们把它叫做圆周率。(板书)用希腊字母π表示。

  师:什么是圆周率呢?也就是说周长是直径的多少倍?

  说到圆周率,老师不得不提起一位我们的祖先。(看63页你知道吗?)

  上面的介绍,你有什么感受?

  圆周率是一个无限不循环小数,在计算时,一般保留两位小数,π≈3.14。

  4、圆周长的计算公式。

  师:刚才,我们圆周率是怎样求出来的?(周长÷直径=圆周率)

  师:根据圆周率你能求出圆的周长吗?

  周长=直径×圆周率

  (c=πd)

  师:如果用半径求呢?

  (c=2πr)

  5、从最后的公式中可以看出,什么决定了圆的周长?

  (四)解决问题

  1、算一算。

  求下面各圆的周长。

  (1)d=4厘米 (2)r=1.5米

  师:求圆的周长必须知道什么条件?

  2、判断。

  (1)、任何一个圆的周长总是直径的π倍。( )

  (2)、圆周率是任何圆的周长和直径的比的比值。( )

  (3)、大圆的圆周率比小圆的圆周率大。( )

  (五)、谈学习收获:

  师:哪位同学能谈谈这节课你的收获与感想?

  板书 设计

  圆的周长

  圆的周长测量: 滚动法、绳测法---------------化曲为直

  规律: 圆的周长总是它的直径的3倍多一些。

  圆的周长÷直径=圆周率

  公式:圆的周长=直径×圆周率

  C=πd C=2πr

  教学 准备

  每小组学生准备:一条绳子、剪刀、一把直尺、3个大小不同的圆。

  圆的周长教学设计 篇5

  教学内容:

  义教六年制小学数学第十一册第110-112页例1。

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想

  新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的`路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:

  ①什么叫做圆的周长?

  ②怎样测量圆的周长?

  ③圆的周长与什么有关系,有什么关系?

  ④圆的周长怎样计算?

  ⑤圆的周长计算有什么用处?

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)

  3、测量圆的周长。

  让学生讨论如何利用桌上的工具,探究圆周长的测量方法。

  小组内讨论、合作测量,然后一生向全班演示测量方法。

  (1)绳测法:用卷尺绕圆一周测量。

  (2)滚动法:媒体显示滚圆的动态。

  (3)设疑激趣:师甩动手中系线的小球转成圆,让学生测量此圆的周长。

  师:这就需要探讨一种求圆的周长的科学方法。

  4、引导学生探求圆的周长与直径的关系。

  (1)让学生观察、猜测圆的周长与什么有关系。

  媒体显示:大小不同的两个圆同时的滚动一周留下的轨迹。

  让学生观察这两个圆的周长与直径的长短。

  (2)圆的周长与直径有什么有关系。

  我们知道正方形周长是边长的4倍,那么圆的周长与直径是否也存在一定的倍数关系呢?这个问题让同学们自己去发现,请分组测量圆片,填好实验报告单。

  学生操作实验,小组分工合作,测量圆片的周长和直径,并用计算器计算出它们的比值,填好实验报告单。

  (3)小组汇报实验结果。投影学生报告单,引导观察数据,发现规律:无论大圆或小圆,圆的周长总是直径的3倍多一些。

  (4)媒体验证。屏幕上两个圆的直径分别去度量它们的周长。

  (5)概括结论。任何一个圆的周长都是它直径的3倍多一些。即圆的周长总是直径的3倍多一些。

  5、理解圆周率的意义。

  (1)让学生自学课本第111页第1、2自然段。

  (2)思考讨论:任何圆的周长和直径的比是一个什么数?它叫什么?用什么字母表示。

  (3)π的读写

  (4)介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

  (5)认识圆周率数字特征和它的近似值。

  6、推导圆周长的计算公式

  (1)由圆周率的概念得到: 圆的周长÷直径=圆周率

  圆的周长=圆周率×直径

  c=πd或c=2πr

  (2)解疑,再现系线小球转成圆。现在会求它的周长吗?只要已知什么?

  三、应用新知,解决问题。

  1、尝试解答例1,点拔讲解规范书写格式。

  2、让学生提问,你对例1的解答有什么疑问。

  3、练习反馈,完成例1下面的做一做。

  四、实践应用,拓展创新。

  1、判断:

  ①π=3.14。( )

  ②圆的周长是它的直径的π倍。( )

  ③圆的直径越长,圆周率越大。( )

  2、求下圆的周长。

  3、应用公式解决实际问题

  (1)生试做

  (2)反馈

  (3)生完成P112做一做

  4、看平面图计算。(媒体显示课始呈现的唐老鸭与米老鼠跑步的画面):如果这个正方形的边长与圆的直径都是5米,你能判断出谁跑的路程多吗?怎样判断?

  五、总结评价,体验成功。

  1、你学到什么?(引导学生进行总结)

  2、怎么学到的?(评价总结,指出这些方法还可以用到今后的学习中去)。

  3、还有什么问题?(回顾本课想学到的知识都学到了没有)。

  六、作业

  1、独立作业:练习二十六第4、5、6题

  2、实践作业:

  3、课后思考题:(媒体显示)米老鼠沿着外圈跑,唐老鸭沿着“∞”字形跑,谁跑的路程多一些?

  圆的周长教学设计 篇6

  一、教学目标:

  1. 让学生知道什么是圆的周长。

  2. 理解并掌握圆周率的意义和近似值。

  3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。

  4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。

  5. 结合圆周率的学习,对学生进行爱国主义教育

  二、教学重点

  推导圆周长的计算公式,准确计算圆的周长。

  三、教学难点:

  理解圆周率的意义。

  四、教学准备:

  老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  五、教学过程:

  (一)、认识圆的周长

  1.情境导入。

  师:同学们,看过《米老鼠和唐老鸭》吗?

  师:今天黄老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?(生齐鼓掌!)

  师:米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?

  2.迁移类推

  师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

  (1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

  (2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

  师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

  (3)师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

  师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?(板书课题:圆的周长)

  每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

  (完成板书:围成圆的曲线的长叫做圆的周长)

  师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

  3.实际感知

  师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

  (二).测量圆的周长

  1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

  师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

  2.小组汇报:(预设)

  (1)师:哪个小组愿意来汇报?

  【方法一:用线绕

  师:谁来与老师配合绕给同学们看看?

  (师生合作用绕线的方法去测量圆周长)

  师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

  师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么?(圆的周长)(2)师:除此以外,还有别的方法吗?

  【方法二:把圆放在直尺上滚动一周。

  师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么?(圆的周长)

  (3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

  师:真的吗?谁敢来试试。

  指名一生上台测量黑板上的圆。可能用线绕。

  师:有什么感觉?(不方便!)

  师:那你可以把它搬下来滚动呀!(生齐笑)

  这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

  (三)、引导学生发现圆的周长和直径之间的关系

  1.猜测

  师:正方形的周长与它的边长有关,周长是边长的4倍,那么圆的周长跟它的什么有关呢?

  2.验证

  师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

  师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

  师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

  师:你感觉到了吗?

  (圆的直径越长,周长越长;圆的直径越短,周长越短。)

  师:这就说明圆的周长肯定与圆的什么有关系?(圆的周长与直径有关系。)师:圆的周长与直径到底有什么关系呢?

  师:刚才,大家都对圆的周长与直径成什么关系进行猜测,下面,我们就通过动手实验来检验大家的猜测是否正确。

  ①测量计算。

  让学生拿出课前准备的4个大小不同的圆,分别测量它们的直径和周长,并按要求填写下表。

  ②汇报、展示。

  让学生汇报自己的测量结果和计算结果,教师把不同的圆的有关数据通过表格的形式呈现出来。

  ③观察、发现。

  让学生观察、比较表中的数据,想一想:通过观察和比较,你发现了什么?通过全班交流,引导学生初步发现:圆的周长总是直径的3倍多一些。(板书:圆的周长总是它的直径的3倍多一些。)

  (3)介绍圆周率和祖冲之在圆周率研究方面作出的贡献。

  ①揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。(板书:圆的周长÷直径=圆周率)

  ②介绍圆周率的表示字母π及其读写法。

  ③介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。

  (四)总结圆周长的计算方法。

  1、根据圆周长与直径的关系,

  你能推导出圆的周长计算公式吗?指名回答,

  引导学生归纳:圆的周长=直径×圆周率(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)师:如果已知圆的半径r,可以怎样计算圆的周长呢?板书:C=2πr)2、回应新课引入的情境,即时练习。

  师:现在,你能求出谁的路程长吗?为什么?

  (五)、应用圆周长计算公式,解决简单的实际问题.

  1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  2.练习题

  板书设计

  圆的周长测量:滚动法 绳测法

  规律:圆的周长总是它的直径的3倍多一些。

  圆的周长÷直径=圆周率

  公式:圆的周长=直径×圆周率C=πdC=2πr

  教学反思:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“∏”是如何来的,都是值得学生研究的问题。因此,教学中,我着力与培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算公式。因为是自己操作的所得,再加上我在课堂中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“∏”的含义就理解得特别透彻,也学得有兴趣。在测量过程中,学生量的数据可能误差有点大,应尽可能把误差减少,课堂应培养学生的动手能力,善于思考和发现。

  圆的周长教学设计 篇7

  教学目标:

  1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算: 。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算: 。

  圆环的面积: 。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1.说说下面各题的最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

  圆的周长教学设计 篇8

  教材分析:

  《圆的周长》是六年级数学上册第一单元的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

  学情分析:

  本节课是在学生掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,知道半径,直径的关系并且会画圆,能测量出圆的直径的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,应从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

  教学目标:

  1、知识与技能目标:使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

  2、过程与方法目标:通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法。

  3、情感、态度与价值观目标:通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

  教学重点:推导圆的周长的计算公式。

  教学难点:理解圆周率的意义。

  教学过程:

  一、创设情境 导入新课

  在动物王国里,两只小蚂蚁正在进行赛跑,甲乙连只蚂蚁分别沿着正方形和圆形跑一圈,谁跑的路程长?为什么?

  圆的知识系列微课(四)《圆的周长》教学设计

  甲蚂蚁跑的路程:4×2=8(厘米)

  要求乙蚂蚁跑的路程,就要求出圆的周长。

  从图上可以看出:圆的周长就是圆一周曲线的长度。这节课我们就来研究圆的周长。

  二、实践操作 探究新知

  1、测量圆的周长

  怎样测量圆的周长呢?

  方法一 绳测法:用绳子绕圆一周,测出绳子的长度。

  方法二 滚测法:把圆在直尺上滚动一周,做上记号,量出圆的周长。

  利用课件展示两种测量方法。

  小结;无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。

  2、探究周长与直径的关系:

  (1)猜想:圆的周长与什么有关呢?

  (2)测量圆的周长与直径,并填表

  周长

  直径

  周长与直径的比值(保留两位小数)

  1号圆片

  2号圆片

  3号圆片

  (3)观察表格:你发现了什么?

  圆的周长总是直径的三倍多一些。

  (4)介绍圆周率:圆的周长与直径的比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

  (5)渗透数学文化

  师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】

  3、推倒圆的周长计算公式:

  刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

  生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

  用字母表示圆的周长为; C=π或 C=2πr

  三、实际应用 解决问题

  乙蚂蚁爬过的路程为:3.14 ×2=6.28(cm)

  8cm﹥6.28

  甲蚂蚁爬过的路程长。

  四、回顾全课 归纳总结

  这节课你有什么收获?

  五、板书设计:

  圆的周长

  化曲为直

  圆的周长=直径×圆周率 π≈3.14

  C=πd或C=2πr

  圆的周长教学设计 篇9

  【教学内容】

  《义务教育课程标准试验教科书. 数学》(苏教版)六年制五年级下册第十单元第98-102页,例4,例5和例6及练一练和练习十八。圆的周长,周长计算公式。

  【教材分析】

  这部分内容是在学生认识圆的基本特征的基础上,引导学生探索并掌握圆的周长公式。首先引导学生从生活经验出发,借助观察、比较进行猜想,再具体描述圆的周长的含义,并让学生通过进一步的思考,认识到圆的周长与直径的关系。最后引导学生根据对测量圆周长活动过程的理解,推导出圆的周长公式。然后让学生应用刚刚掌握的公式计算圆的周长,解决简单的实际问题,巩固对公式的理解。

  【教学目标】

  1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。

  2、培养学生的观察、比较、概括和动手操作的能力。

  3、对学生进行爱国主义教育。

  【教学重点】

  圆的周长和圆周率的意义,圆周长公式的推导过程。

  [教学难点]

  圆周长公式的推导过程。

  【教学准备】

  多媒体课件、实物投影、圆、绳子、直尺、圆规等。

  【教学过程】

  一、情境创设,生成问题

  1、出示一个正方形花坛和一个圆

  问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?

  预设一:看哪个跑得步子多。

  预设二:计算它们的周长,进行比较更为简便。

  2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系?

  预设一:C=(a+b)×2

  预设二:C=2a+2b

  3、什么是圆的周长?

  让学生上前比划,圆的周长在那?那一部分是圆的周长?

  得出定义:围成圆的曲线的长叫做圆的周长。

  二、探索交流,解决问题

  (一)圆周长的公式推导。

  1、探索学习。

  (1)你可以用什么办法知道一个圆的周长是多少?

  (2)学生各抒己见,分别讨论说出自己的方法:

  预设一:用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

  预设二:把圆放在直尺上滚动一周,直接量出圆的周长。

  那么用一条线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

  用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

  设计意图:引导学生从生活经验出发,借助观察、比较进行猜想:到底怎样测圆的周长。进而激发学生进一步探究圆的周长是如何求出来的兴趣。

  2、动手实践。

  (1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

  (2)引生看表,问你们看周长与直径的比值有什么关系?

  预设:都是3倍多,不到4倍。

  (3)你有办法验证圆的周长总是直径的3倍多一点吗?

  (4)阅读课本P102,介绍圆周率,及介绍祖冲之。

  ∏=3.1415926535…… 是一个无限不循环小数。

  3、得出计算公式。

  圆的周长=圆周率×直径

  C = ∏d或 C = 2∏r

  设计意图:教材通过示意图对这两种方法做了清楚的说明,这有利于学生学会具体的测量圆周长的方法,又能使学生从中体验“化曲为直”的策略。

  (二)、解决新问题。

  1、解决情境题中的问题。

  学生独立完成,小组内订正。

  2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车约转动多少周?

  小组内想出解决的办法,并在全班交流。

  预设一: 已知 d = 20米 求:C = ?

  根据 C =πd 20×3.14=62.8(m)

  预设二: 已知: 小自行车d = 50cm

  先求小自行车C = ? c=πd

  50cm=0.5m 0.5×3.14=1.57(m)

  再求绕花坛一周车约转动多少周?

  62.8 ÷1.57=40(周)

  答:它的周长是62.8米。绕花坛一周车约转动40周。

  设计意图:引导学生根据圆的周长公式列式解答。这样有利于学生提高综合应用数学知识和方法解决实际简单的实际问题,巩固对公式的理解的能力。

  三、巩固应用,内化提高

  1、求下列各题的周长。

  书本102页练习十八的第1、2题

  2、判断正误。

  (1)圆的周长是直径的3.14倍。 ( )

  (2)在同圆,圆的周长是半径的6.28倍。( )

  (3)C =2πr =πd 。 ( )

  (4)半圆的周长是圆周长的一半。 ( )

  设计意图:通过这些小题的练习,让学生进一步加深对相关知识的理解。

  四、回顾整理,反思提升

  通过这节课的学习你都知道了什么?还有什么不懂的呢?

  圆的周长教学设计 篇10

  教学内容

  北师大版小学数学六年级上册教材第9页~第11页。

  课前思考

  本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。

  课堂写真

  (教师利用课件出示两种自行车图片,学生观察。)

  师:你会选择哪一辆参加我校组织的自行车比赛呢?

  生:第一辆。

  师:为什么选择第一辆自行车呢?

  生:因为它的轮子大,跑得快。

  师:为什么它跑得快呢?

  生:因为它滚一圈的长度长。

  师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?

  生:我们可以通过测量的方法得到车轮的周长呀!

  师:你的反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!

  (学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)

  [分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。

  师:哪个小组愿意先来晒一晒你们的测量方法?

  生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。

  师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?

  [分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。

  生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?

  (说完,大家为第二小组的同学们鼓起了掌。)

  师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!

  (此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)

  师:同学们请看,小球走过的路线是什么形状呢?

  生:是一个圆形。

  (这时,教师转向第二组的同学并提问。)

  师:如果想得到这个圆的周长,还能用你们小组的这种绕线测量的方法吗?

  生:不能。

  [分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。

  师:第三小组的同学,你们有什么好方法?

  (第三小组派代表发言。)

  生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?

  (同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)

  师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?

  生:不可行。

  师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的周长。

  生:圆的周长与什么有关?有怎样的关系?

  师:请利用你们手中的学具合作探究吧!

  (同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)

  [分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。

  课后解读

  数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。

  圆的周长教学设计 篇11

  教学内容:

  冀教版《数学》六年级上册第六单元一课时

  教学目标:

  1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。

  2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。

  3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。

  教学重点:

  能利用公式正确计算圆的周长。

  教学难点:

  理解圆周率的意义,圆的周长计算公式的推导。

  教学准备:

  课件,直径不同的圆,细绳,软皮尺,直尺,计算器。

  教学过程:

  一、导入

  师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)

  师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”

  1、什么叫长方形和正方形的周长?

  2、长方形和正方形的周长和什么有关?

  学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正

  方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。

  (课件出示圆形)

  师:“你对圆形有哪些了解?”

  学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。

  师:那什么是圆的周长呢?

  生:围成圆一圈弧线的长度总和叫圆的周长。

  师:那你还想知道哪些圆的知识呢?

  生:我想知道圆的周长和面积。

  师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。

  (板书课题)

  二、探索新知

  1、周长的测量(自主发现、动手操作)

  师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的方法最准确?

  学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。

  2、圆周与直径的探究

  师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周

  长与什么有关系。生“直径。”

  师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。

  3、小组合作探究圆周长与直径、半径的关系。

  师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

  小组合作要求:

  1、利用手中的学具测量物品中圆的周长和它的直径。

  2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

  3、观察得到的数据,你发现了什么?

  师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。

  学生汇报几组数据,教师板书。

  师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。

  师:打开数学书,我们自学83页知识来了解。

  学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。

  (板书:圆周率π)课件出示补充祖冲之小知识窗

  早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,

  C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?

  生:在同一个圆里,直径是半径的两倍。

  三、实践与应用

  1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?

  2、求圆的周长

  (1)r=6

  (2) r=10

  (3) d=5

  3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。

  四、教师小结

  圆的周长教学设计 篇12

  【教学资料】

  圆周长计算公式的推导,周长计算。(人教版《义务教育课程标准实验教科书·数学》六年级第62~64页的教学资料。)

  【教学目标】

  1.理解圆周率的好处,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2.培养学生的观察、比较、分析、综合及动手操作潜力。

  3.领会事物之间是联系和发展的辩证唯物主义观念以及通过现象看本质的辨证思维方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  【教学重点与难点】

  重点:圆的周长计算公式的推导,能利用公式正确计算圆的周长。

  难点:深入理解圆周率的好处。

  【教材分析】

  “圆的周长”概念的教学,是以长方形,正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,“圆的周长”计算方法的教学,是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。

  【学情分析】

  学生在学习圆的周长前已经理解了周长的好处,掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,明白半径,直径的关系并且会画圆,能测量出圆的直径。这节课是在这样的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。同时学生对各项动手操作的实践活动十分感兴趣,并且本班大部分学生思维活跃,善于动脑思考,有必须的自主学习潜力,相互探讨学习的风气较浓,对新事物比较感兴趣,平时教学中,经常开展小组合作式的探究学习活动,学生有较强的合作意识。老师只要充分发挥、调动他们的用心性,他们是乐意做课堂的主人的!

  【教学用具准备】

  教师准备:PPT课件、细绳、直尺、绳子系的小球。

  学生准备:圆形物品、圆形橡筋、直径为2、3、5厘米的圆形纸片、直尺、三角板、棉线、软皮尺、剪刀、实验报告单、计算器。

  【设计理念】

  我们的课堂是生活的课堂,生命的课堂。但是,在现实的课堂中“为讨论而讨论”、“为合作而合作”、“为活动而活动”等华而不实虚有其表的教学现象频频出现。细细反思,教学观念与教学行为之间的距离主要涉及到课堂教学的有效性问题。如我在本课设计上力求为学生创设“探究──发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华,从而使小组交流、师生交流、生生交流得以有效进行。我在教学中采取的策略如下:

  1、利用现代教育技术,发挥强大的演示作用。

  《圆的周长》从激趣引入、演示操作、指导探究、练习的出示都充分应用现代教育技术将文字、图形、动画、声音等多种信息加工组成在一齐来呈现知识信息的特点,使学生在学习的过程中,充分调动他们的感官,激发他们的学习兴趣,调动他们学习的用心性,同时把知识的构成过程有效的呈现给学生。

  2、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,是一处“再创造”的过程。在这个过程中,实践操作是最基本、最重要的手段和方法之一。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  3、在探究中发现与拓展。

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过测量圆的周长、探讨圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  总之,课堂应是师生互动、心灵对话的舞台;课堂应是师生共同创造奇迹、唤醒各自沉睡的潜能的时空;课堂应是向在场的每一颗心灵都敞开温情双手的怀抱,平等、民主、安全、愉悦是她最显眼的标志。

  【设计思路】

  从本课教学资料整体看,我的设计思路是下面的图:

  圆周长认识

  圆周长获取

  测量

  圆周率

  圆周长应用

  公式

  计算

  圆的周长教学设计 篇13

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:理解圆周率的意义。

  教具准备:圆片、铁圈、绳子、直尺。

  教学方法:观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  一圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  二圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

  圆的周长教学设计 篇14

  教学过程

  设计意图

  课堂活动一:创设情境,引起猜想:认识圆的周长

  (一)激发兴趣

  这天,我们还来学习有关圆的知识。老师要先给大家讲一个故事。(边讲述边课件演示)小黄狗和小灰狗比赛跑,两只小狗都从同一点出发,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰狗得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1.回忆正方形周长:

  师:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:

  师:那小灰狗所跑的路程呢?(师根据学生的回答板书课题:圆的周长)

  师:圆的周长又指的是什么意思?

  生:圆一周的长度,叫做圆的周长。(师板书:围成圆的曲线的长)

  师:请同学们闭上眼晴:“想像”,圆的周长展开后,会怎样?

  生:一条线段。

  师:请同学们拿出老师发给你的圆形橡筋,并剪断,看看成什么?

  学生齐答:也是一条线段。

  3.动手体会:每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  课堂活动二:动手操作,引导探索

  (一)讨论圆周长的测量方法

  1、讨论方法:下面,老师要请各学习小组利用手中的测量工具,互相合作,动手测量圆的周长。测量完后,相互交流一下,有几种方法?(学生讨论,动手测量)

  2、反馈:哪个小组派个代表来说说你们小组是怎样测量出圆的周长?

  (学生说出三种方法:绳测法、滚动法、软皮尺测,老师进行演示)

  3、小结各种测量方法:(板书)

  转化

  曲直

  4.创设冲突,体会测量的局限性

  在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是不是所有的圆都能用这种方法测量出它的周长的?同学们请看(老师甩动绳子系的小球,构成一个圆)小球的运动构成一个圆,又比如(老师演示摩天轮),你能用绳测、滚动的方法直接量出它的周长吗?

  这说明用绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应思考圆周长跟什么有关系。

  (二)讨论正方形周长与其边长的关系

  要探讨圆的周长到底与什么关系?先探讨正方形周长与其边长的关系

  (课件出示一个表格)

  正方形

  周长

  边长

  周长:边长

  1、

  1cm

  2、

  2cm

  3、

  3cm

  我的发现:正方形的周长与它的边长的比值是()。即正方形的周长是它的边长的()倍。(多媒体显示)。

  (三)探讨圆的周长与直径的关系

  1、请同学们看屏幕,认真观察比较一下,想一想,圆的周长跟什么有关系?(多媒体教具演示:圆的周长与它的直径长短有关)

  提问:你们是怎样看出圆的周长和直径有关系?

  小结:圆的直径越长,它的周长就越长。这说明圆的周长和直径有关系。

  2、学生测量出圆的周长,并计算周长和直径的比值

  圆的周长跟直径有关系。有什么关系呢?圆的周长跟直径是否存在着倍数关系呢?下面我们来做个实验。小组分工合作,用你喜欢的方法测量出圆的周长和直径,并计算出周长和直径的比值,得数保留两位小数,填好报告单,第四栏可用计算器。

  《圆的周长》实验报告单

  实验目的:找出圆的周长与直径之间的关系。

  实验材料:3张圆形纸片、直尺、三角板、棉线、剪刀、计算器。

  测量的物品

  周长(C)

  厘米

  直径(d)

  厘米

  周长与直径的

  比值(C/d)

  圆形纸片1

  圆形纸片2

  圆形纸片3

  我们的发现:

  (学生测量、计算、填表,在展示台出示结果)

  请一组同学上台展示表格,师询问:从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  学生汇报结论:这些圆的周长都是直径的3倍多一些。(师板书)

  师:那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看屏幕,仔细观察。(多媒体教具演示:圆的周长总是它的直径长度的3倍多一些。)

  板书

  师根据课件演示介绍圆的周长都是直径的3倍多一些圆周率

  课堂活动三:认识圆周率、介绍祖冲之

  师:表扬全班同学。圆的周长到底比它的直径的3倍多多少呢?那里,我给同学们讲一个古代数学家祖冲之测量圆周率的故事。

  (1)多媒体课件介绍圆周率的知识及祖冲之对圆周率的贡献。早在2000年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”的说法,意思是圆的周长是它的直径的3倍,约1500年前,我国伟大的数学和天文家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲数学家要早1000年左右.此刻世界上最大的环形山,就是以祖冲之的名字命名的。我们确实就应为前人的聪明、智慧感到自豪和骄傲。之后瑞士的数学家欧拉用希腊字母∏代表圆周率。(板书::∏).圆周率是一个无限不循环小数。在计算时,如果用这个无限小数参加计算是不方便的,故通常将∏取两位小数。(板书π≈3.14)

  (2)谈感想,理解误差。

  看完这段资料,“读了这则故事,你有何感想?”

  生1:我要向祖冲之爷爷一样努力学习,做一个对人类有贡献的人。

  生2:我们组刚才测量时不够细心,今后我们要向祖冲之爷爷学习,做一个细心的人。

  课堂活动四:总结圆的周长公式

  1、刚才我们通过实验可知:圆周率是怎样得出来的呢?

  根据小组学生回答教师板书:

  圆周率=圆的周长÷直径==π是一个固定的值

  2、由此我们可知,如果明白直径如何求周长呢?

  教师板书:圆周长=直径×圆周率

  如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=πd

  3、圆的周长还能够怎样求?

  教师板书:C=2πr

  4、圆的周长分别是直径与半径的几倍?

  课堂活动五:课堂反馈

  一、决定.

  1.Π=3.14()

  2.圆的周长是它的半径的∏倍。()

  3.圆的直径越大,它的圆周率就越大。()

  4.只要明白圆的半径或直径,就能够求圆的周长。()

  5.大圆的圆周率比小圆的圆周率大。()

  三、实践操作

  2.电脑课件出示主题图。如果圆形花坛的直径是20米,它的周长是多少米?。(让学生独立完成,群众订正)

  问题2:小自行车车轮的直径是50cm,绕花坛一周车轮大约转动多少周?

  (学生完成后,让学生打开课本64页例1对照,反思自己的解答过程)

  (注:评析问题2时,能够推荐学生用估算来解答。)

  3.解答开始的问题

  这天我们学习了圆的周长的计算方法,此刻我们来帮忙小黄狗和小灰狗算一下它们跑的路线,看看小灰狗为什么会赢,小黄狗为什么会输。

  小黄狗跑的路线是正方形的周长,小灰狗跑的路线是圆的周长,动手算一算,谁跑的距离远?

  10米

  四、拓展延伸

  看,小黄狗和小灰狗又要比赛了,这一次小灰狗沿大圆跑一圈,小黄狗沿两个小圆“∞”跑一圈,谁跑的路程长呢?好好想一想。

  课堂活动六:全课总结,反思评价

  1、同学们,这天我们一齐研究了圆的周长,下面我们来谈一谈本节的收获。

  2、评价自己小组合作学习的表现如何。

  课外活动:家庭作业

  1、基本练习:完成课本第64页做一做第1、2题。

  2、提高练习:完成课本第65页练习十五第2、3题。

  3、操作练习:画一个周长是12.56厘米的圆。

  板书设计:

  利用了生动的课件创设了教学情境,激发了学生参与的兴趣,为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举两得;而且,动画的演示过程,很好地展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了周长的概念,为后面的学习奠定了基础。

  感知动作同人的心理活动是密切联系的,动作记忆保留的时间更长久。小学生在其数学思维活动中,视觉映象起着相当重要的作用,如果通过活动强化问题解决前的感知动作思维,有利使记忆以动作效果来储存。通过让学生把圆形橡筋剪断,使学生感知化曲为直的概念。为下面探索圆的周长做好铺垫。

  利用学生好奇、好动的特点,引导学生小组合作,测量归纳出圆的周长的方法,不失时机地表扬小组的合作精神,让学生初步感受到成功的喜悦。

  教师抓住时机,甩动绳子系的小球,构成一个圆,演示摩天轮,让学生感受到用绳测、滚动的方法并不能测量出所有圆的周长,就应找到一种既简单有能准确计算圆的周长的方法,进而引导学生研究圆的周长与直径的关系。

  通过填写正方形的周长与它的边长的关系,为下面的探讨圆的周长与它的直径的关系做了一个很好的铺垫。因为学生在记忆正方形的周长时,只是记正方形的周长是4个a相加的和,很少说是正方形的周长是边长的4倍。上表的填写对于中下生的小组合作起了一样板的作用。

  通过直观的演示学生很快就找到了圆的周长和直径有关系。

  《数学课程标准》提出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”这一环节,引导学生分工合作,用自己喜欢的方法测量出圆的周长,求出比值,对所收集的信息进行分析处理,在动手的过程中发现了圆的周长都是直径的3倍多一些,并通过课件演示验证了结果。使学生在探索新知的过程中,由知识的理解者转变为知识的发现者和创造者,不仅仅理解掌握了知识,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。

  那里引出故事,在帮忙学生增长知识的同时,自然在对学生进行了爱国主义教育,使学生产生对数学知识一往情深的志趣。

  本环节的设计,实现由具体到抽象,由物化到内化,理解计算公式。通过转化,从而完成新知的生成。

  通过辨析让学生巩固圆周率是常数的认识,加深对圆周率的理解。

  操作练习设计紧扣课题,从解决基本练习到解决主题图中实际问题,使学生认识到,数学来源于生活,也服务于生活,对新知识有了更深一层的认识,巩固新知,发展了潜力。

  通过解答课前导入的问题,让学生体现多层次,多角度的练习,培养了学生的思维和解决问题的潜力,更能促进学生把知识和技能转化为智力、潜力。

  在解决了开始的问题后,紧跟着变化题目的图,让学生能感知当大圆的直径等于另外两个小圆的直径和时,大圆的周长等于这两个小圆的周长和。是对圆周长公式的综合应用。

  让学生谈收获,能够自我认识、总结课堂的表现与认识掌握程度,最后回忆新知、巩固新知,体验成功的喜悦。

  课外作业题目体现层次性,注重基础知识的巩固和基本技能的运用。

  围成圆的曲线的长

  圆的周长

  (实物测量方法)

  转化

  圆周率

  字母表示π≈3.14

  曲直

  圆的周长总是它的直径的3倍多一些

  圆周率=圆的周长÷直径==π是一个固定的值

  圆的周长=直径×圆周率

  字母表示:C=πd

  C=2πr

  圆的周长教学设计 篇15

  【教学目标】

  1、让学生明白什么是圆的周长。

  2、理解并掌握圆周率的好处和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。

  5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  6、培养学生的观察、比较、分析、综合及动手操作潜力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备图片。

  【教学过程】

  一、激情导入

  1、动物王国正在举行动物运动会可热闹了,想不想去看一看?

  2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

  二、探究新知

  (一)复习正方形的周长,猜想圆的周长可能和什么有关系。

  1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

  2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

  3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)

  4、猜想:你觉得圆的周长可能和什么有关系?

  (二)测量验证

  1、教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

  2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ②观察数据,比较发现。

  提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  3、比较数据,揭示关系

  正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

  (三)介绍圆周率

  1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

  2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

  3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

  圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

  (四)推导公式

  1、到此刻,你会计算圆的周长吗?怎样算?

  2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

  3、明白半径,能求圆的周长吗?周长是它半径的多少倍?

  三、运用公式解决问题

  1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

  2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  3、钟面直径40厘米,钟面的周长是多少厘米?

  4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

  5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  四、课堂小结

  通过这节课的学习你想和大家说点什么?

  这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。