1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
教学重点
理解和掌握循环小数等概念.
教学难点
理解和掌握循环小数等概念.
教学过程(www.fwsir.com)
一、铺垫孕伏
(一)口算
0.8×0.5= 4×0.25= 1.6+0.38=
0.15÷0.5= 1-0.75= 0.48+0.03=
(二)计算
21÷3= 15÷3= 12÷3= 10÷3=
教师提问:通过计算,你发现了什么?
二、探究新知
(一)教学例7
例7 10÷3
1.列竖式计算
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10÷3=3.33……
(二)教学例 8
例8 计算58.6÷11
1.学生独立计算
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6÷11=5.32727……
3.观察比较 10÷3=3.33…… 58.6÷11=5.32727……
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法
3.33……可以写作 ;
5.32727……可以写作
6.练习
把下面各数中的循环小数用括起来
1.5353…… 0.19292…… 8.4666……
(三)教学例9
例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)
1.学生独立列式计算
130÷6=21.666……
≈21.67(十克)
答:小汽车大约装21.67千克汽油.
2.集体订正
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.
28÷18 2.29÷1.1 153÷7.2
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的'.也就是被除数能够被除数除尽.如3÷2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10÷3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
三、课堂练习
(一)计算下面各题,哪些商是循环小数?
5.7÷9 14.2÷11 5÷8 10÷7
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090…… 0.0183838……
0.4444…… 7.275275……
四、布置作业
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
9.4÷6 38.2÷2.7 204÷6.6 6.64÷3.3
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)
九、板书设计
循环小数
一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.
10÷3=3.33…… 58.6÷11=5.32727……
= =