用公式解一元二次方程12.1  用公式解一元二次方程(一) —— 初中数学第五册教案

  http://sunwu.net

一、素质教育目标

(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式.

2.教学难点:正确识别一般式中的“项”及“系数”.

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的'提出及解决,为深刻理解一元二次方程的概念做好铺垫.

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

5.例1  把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.

8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

(四)总结、扩展

引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

四、布置作业

1.教材P.6 练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

五、板书设计

第十二章  一元二次方程

12.1用公式解一元二次方程

1.整式方程:……

4.例1:……

2.一元二次方程……:

……

3.一元二次方程的一般形式:

 

……

5.练习:……

……

……

六、课后习题参考答案

教材P.6A2.

教材P.6B1、2.

1.(1)二次项系数:ab  一次项系数:c  常数项:d.

(2)二次项系数: m-n  一次项系数:0  常数项:m+n.

2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.

思考题

(1)不能.如x3+2x2-4x=5.

(2)一元三次方程:只含有一个未知数,且未知数的最高次数是3,这样的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).

一元四次方程:只含有一个未知数,且未知数的最高次数是4,这样的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).