一、复习准备。
1、出示平行四边形图。
2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?
3、揭题。
二、新授。
1、出示梯形图。
(1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?
(2)操作实验。
反馈:你拼成了什么图形?指名拼一拼。
指导拼法。
①重合。
②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。
③平移。
思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?
2、出示直角梯形图。
(1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。
(2)提问:拼成了什么图形?平行四边形与梯形有什么关系?
(3)观察:每个直角梯形的面积与拼成的长方形的面积有什么关系?
小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。
3、观察拼成的平行四边形。
思考:(1)比较梯形的上底下底与拼成的`平行四边形的底有什么关系?
(2)比较梯形的高与拼成的平行四边形的高有什么关系?
同桌讨论完成填空。
4、填表。
(1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。
(2)从实验中你有什么发现?说说怎样求梯形的面积?
5、教学字母公式。
提示:可以将梯形转化成平行四边形来推导它的面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。
三、应用。
1、 应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?
2、 学习例题。
3、 完成“练一练”。
4、 拓展。
四、总结。
1、 这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?
2、 通过什么方法转化的?
3、 梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?
五、板书。
梯形面积的计算
平行四边形的面积 = 底×高
梯形的面积 = (上底+下底)×高 2
S = (a+b) h 2