【教学内容】
九年制义务教学六年级小学数学教科书(苏教版)第九册第48~49页。
【教材简析】
循环小数是学生教难准确地理解和表述的一个概念,特别是在表述其意义的一些抽象说法,学生难以理解。教材通过除法的实例,引导学生观察比较,使学生掌握循环小数的特征,理解循环小数的意义,在此基础上,认识循环节、纯循环小数和混循环小数,并学习循环小数的简便写法。
【教学过程(www.fwsir.com)】
一、做好铺垫
1、拍节奏游戏
师:(板书:︱×××︱这个节拍你们能拍出来吗?
(学生一起齐拍掌,中断后提问)
师:你们的节奏为什么这么整齐呢?
生:我们全班同学都是按照先拍一下,后拍两下,这样相同的节奏拍的。
师:如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,
想一想,你们要拍多少次?
生:要拍很多很多次。
生:要拍无数次。
师:象这样拍的次数是“有限的”还是“无限的”?
生:是无限的。
师:你们刚才拍的次数呢?
生::是有限的。
【用游戏的方法导入新课,一是直观,二是引人入胜,使学生一下子便进入学习的境地。另外,已使学生初步感知“循环”、“无限”等概念】
2、找规律,猜图形。
运用抽拉教具,一次出现两个圆和一个三角形的图形。
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />
⑴ 当逐个出现至第七个图形,即第三组
师:谁能猜到下面一个是什么图形吗?
生:下面一个图形是“○”。
师:你是怎样想出来的的呢?
生:因为这幅图形的排列顺序是有规律的,每组都有三个图形,前面两个是圆,后面一个是三角,而且是按照这样的规律重复地出项的,所以这个图形应该是第三组的第二个图形,当然是“圆形”。
师:×××同学回答得非常好。
(教师接着演示,让学生猜出图形)
⑵ 出示完第12个图形,当学生猜出下面一个是“圆”时,出现了“……”。
师:这个省略号表示什么意思?
生:表示后面有很多组前面两个圆,后面一个三角,这样的图形。
师:对的。也就是说,这幅图形是依次不断地重复出现这样的图形。请同学们想一想,这幅图形中有多少组这样的图象呢?
生:很多组,无数组。
(板书:依次不断地重复出现、无限)
【采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于培养学生推理性逻辑思维能力。】
二、进行新课
㈠ 循环小数
1、组织学生用竖式计算一道题(出示32÷6),并引导学生注意观察商有什么
特点?
生:我发现这道除法题除不尽,商总是重复出现“3”。
师:为什么会重复出现“3”呢?
生:因为余数重复出现“2”了,所以……。
师:这么说,32÷6的商里有多少个“3”呢?
生:有无数个“3”。
师:既然是有无数个,可以怎样表示呢?
生:我认为可以用省略号表示无数个“3”。
(板书:32÷3=5.33 ……)
2、出示2.7÷11,让学生除到商是五位小数时停笔。
师:想一想,如果继续除下去,商会怎样?
生:商里会依次不断地重复出现“4”和“5”。
师:你是怎么想出来的呢?
生:因为余数重复出现“5”和“6”,所以商就会重复出现“4”和“5”。
师:是不是这样的情况呢?继续除除看。
师:谁能说出这道题的商。
生:2.7÷11等于0.24545等等。
师:“等等”用什么符号表示?能不能不写省略号?为什么?
生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多45。
师:(出示下面一组题)能说出省略号表示的意思吗?
2÷9=0.222 ……
5÷12=0.4166 ……
9÷55=0.16363 ……
【让学生在尝试练习中认识循环小数,引导学生发现当两个数相除出现循环小数时商和余数的规律。这就重视了让学生掌握知识形成的过程,有利于学生今后的再学习。】
3、概括。
师:象这些小数,就是我们今天要学习的“循环小数”(板书课题)。谁能说一说什么叫“循环小数”?
生:一个小数,几个数字重复出现。
生:一个小数,几个数字依次不断地重复出现。
生:一个小数,从某一位起,一个数字或几个数字依次不断地重复出现。
【注:画横线部分,是教师逐步板书内容】
师:你们认为哪些同学说的最好?最请同学们看看书上写的与×××同学刚才说的还有什么不同?
生:书上多了“小数部分”这几个字。
师:书上为什么要强调从“小数部分”的某一位起呢?
生:这就是说循环小数是从“小数部分”而不是从整数部分的`某一位起,一个数字或者几个数字依次不段地重复出现。
4、判断。
师:请同学们判断下面哪几个数是循环小数?为什么?(小黑板出示)
0.999 ……
5.02727 ……
6.416416 ……
3.21212121
3.1415926 ……
0.547745 ……
学生判断后,教师组织讨论。
⑴ 师:3.21212121师循环小数吗?
生:不是。
师:小数部分的“21”这两个数字不是依次重复出现三次吗?为什么不是循环小数呢?
生:虽然“21”重复地出现了三次,但没有“不断地”重复出现,所以它不是循环小数,它是有限小数。
⑵ 师:3.1415926 ……是无限小数吗?
生:是。
师:是循环小数吗?为什么?
生:因为小数部分没有出现一个或几个相同的数字,所以……。
⑶ 师:在0.547745 ……这个小数中,“5”、“4”、“7”这三个数字已重复出现两次,它是不是循环小数呢?为什么?
生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。
【结合实例,帮助学生理解循环小数的意义,加深学生认识循环小数。这种抽象的文字概念,学生并不能靠读几遍就理解的,要联系实际,逐字逐句地讨论它的意义。】
㈡ 循环节
师:(指板)“5.333 ……”中不断重复出现的数字是哪一个?(3)
在“0.24545 ……”中依次不断出现的数字是哪几个?”(4、5)在循环小数中依次不断重复出现的数字有个名字:我们把它叫做循环节。
师:想一想,什么叫做循环节呢?请你找出以上判断题中循环小数的循环节。(教师指数,学生回答)
(当教师指第⑷小题时)
生:这个数的循环节是“21”。
师:对吗?
生:不对,因为这个数不是循环小数,所以它没有循环节。
师:对的,循环节只有在循环小数里才出现,如果不是循环小数也就没有循环节。
㈢ 循环小数的简便记法
1、讲解。
师:循环小数一般的写法是把循环节写出两边或者三遍,然后写上省略号。
不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个小圆点,这个点叫做循环点。例如:0.245。读作:零点二四五,四五循环。
2、练习。
⑴ 写出 5.33 ……的简便写法。
⑵ 写出判断题中循环小数的简便写法
㈣ 纯循环小数和混循环小数
1、引导
师:比较一下:“3.67”和“3.267”这两个循环小数的循环节的位置有什么不
同?
生:“3.67”的循环节是从小数部分的第一位就开始的;而“3.267”的循环节不是从小数部分第一位开始的。
师:这是两种不同的循环小数,我们给它们分别起上名字,请看课本